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Abstract

We define a class of polyhedra with edge patterns that correspond to two well-known families of knots: torus and

Turk’s Head. We describe the physical properties of models built with a single loop of stiff wire and classify their 3D

shapes. We also present tensegrity models of these polyhedra.

Introduction

Decorative knots, which combine functionality with symmetric and aesthetic qualities, have been used

throughout history. To describe these aspects we need to look not only at their topology, the traditional topic

of knot theory, but also at their geometry. In this paper we examine the 3D shapes taken by some knots by

viewing them as polyhedral models.

Consider a polyhedron where every vertex has degree 4 (for example, the octahedron, cuboctahedron,

any antiprism, etc.) and assume we want to build a wireframe model of this polyhedron. We could accomplish

this with a single loop of wire that follows an Eulerian circuit; at each vertex (viewed, intuitively, as a 4-way

intersection), the wire may turn left or right or it may go straight through. Assume now that we want to

eliminate any sharp bends in the wire by following a path that goes straight through at every vertex. Such a

path might close without traversing all edges; if this happens, we can start a new path (and a new loop of wire)

at an edge that was not traversed and continue straight through each vertex until the loop closes. Repeating

this process until all edges have been visited, we obtain a unique set of circuits called here “straight circuits”.

A polyhedron model built by tracing the straight circuits with loops of wire is a link and each loop is a knot.

At each vertex we have a choice of crossing the wire either over or under itself; depending on these choices

we obtain many links from a given polyhedron. If the wire is interwoven in a perfect over/under manner

we obtain an alternating link (for example, the three straight loops of the octahedron will be linked as the

Borromean rings); polyhedral models built in this manner are described in [2].

We will call the polyhedron “single threaded” if it has only one (Eulerian) straight circuit (i.e., the

corresponding link is a knot) and define an infinite class of such polyhedra. We’ll classify the 3D shapes

taken by the wireframe models which correspond to the torus and Turk’s Head families of knots. We also

show how to take advantage of single-threadeness when building tensegrity models of these polyhedra.

There is a growing body of research on the geometric and physical properties of knots, see for example [4].

Stiff wire models of Turk’s Head knots are explored in [6] and [7], while general methods of obtaining links

from polyhedra are described in [9] and [10]. The opposite of a straight circuit is an A-trail, an Eulerian

circuit that turns either left or right at each vertex; wireframe models based on A-trails are described in [8].

A Family of Single-threaded Polyhedra

Topologically, the polyhedron Sm,n, m,n ≥ 3, has two n-sided polygons as bases, each bordered by n triangles,

and separated by m − 3 bands of n quadrilaterals each. We will not need here a precise geometric definition,
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(a) S4,5 (b) S5,6 (c) S6,5

Figure 1: Models of some Sm,n polyhedra

but note that we can construct Sm,n as a spherical polyhedron that has the symmetry of the right n-gonal

prism Pn when m is even and of the right n-gonal antiprism An when m is odd (some of the models described

below will preserve this symmetry). A few approximate models are shown in Figure 1; in (b) and (c) the

ITSPHUN plastic pieces are bent slightly to make the construction possible. Flat-faced polyhedra that have

this symmetry exist for m = 3 and m = 4 (e.g., Figure 1 (a), retrieved from [12]), see below. It should be

obvious that every Sm,n vertex has degree 4.

We can also define Sm,n via rectification (critical or complete truncation, ambo in Conway’s polyhedron

notation, see [11]). For any polyhedron P, all the vertices of its rectification aP have degree 4; if P has n

edges, aP has n vertices (and thus 2n edges), and if P′ is the dual of P, aP′
= aP.

If we set p = ⌊m/2⌋ − 1, Sm,n is the rectification of either:

• a stack of p copies of Pn (or its dual, a stack of p − 1 copies of Pn joined at the ends with two n-gonal

pyramids), if m is even; or

• a stack of p copies of Pn joined with an n-gonal pyramid at one end (self-dual), if m is odd.

Thus S3,n is a rectified n-gonal pyramid, which is just An, and S4,n is aPn, a rectified n-gonal prism.

Sm,n has (m − 1)n vertices and 2(m − 1)n edges which we can divide into 2n base edges and 2(m − 2)n

side edges, which, in turn, can be grouped into 2n “diagonals” (pieces of the straight circuit connecting

two vertices on opposite bases) of m − 2 edges each. There are two families of diagonals depending on the

direction they wrap around the side of the polyhedron.

A straight circuit in a polyhedron with vertices of degree 4 is a closed path with the property that no two

consecutive edges are on the same face. The polyhedron is single-threaded if it has only one straight circuit.

Theorem 1. Sm,n has gcd(m,n) straight circuits of equal length.

Proof sketch. Number the edges of one of the n-gonal bases 0,1, . . . ,n − 1. A straight circuit that starts with

edge i will traverse a diagonal, one edge of the other base, a second, opposite direction, diagonal and return

to the starting base with edge i + m (mod n), etc. Each straight circuit will have n/gcd(m,n) such groups of

2(m − 1) edges consisting of one edge from each base and two diagonals, one in each direction. �

Corollary. Sm,n is single-threaded iff m and n are relatively prime.
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(a) S3,2 (b) S2,3 (c) S3,4 = A4

Figure 2: Wireframe models

We have thus obtained an infinite family of single-threaded polyhedra that includes all antiprisms An

where n is not a multiple of 3, all rectified prisms aPn where n is odd, etc. Note that each straight circuit of Sm,n

completes m/gcd(m,n) revolutions around the central axis of the polyhedron, so if Sm,n is single-threaded,

its single straight circuit will go around the central axis m times.

Note also that if we include polyhedra with digonal faces, we can extend the definition of Sm,n to m = 2

and n = 2. Sm,2 has digonal faces as bases, e.g., S3,2 (Figure 2(a)), essentially a tetrahedron where two

opposite edges are doubled. S2,n is an n-gonal lucanicohedron, a degenerate polyhedron with two n-gonal

bases separated by n digons (Figure 2(b)). All the results presented here hold for these degenerate polyhedra.

Although there are, of course, many other single-threaded polyhedra, single-threadeness is not common

among the most studied polyhedra; for example, none of the Platonic, Archimedean, or Johnson solids with

vertices of degree 4 are single-threaded.

Wireframe Models

We can build a wireframe model of a single-threaded polyhedron using a single loop of wire that follows the

straight circuit. If we build the models in a conventional manner, i.e., tie the wire at the polyhedron vertices,

the models will approximate the shape of the original polyhedron, see Figure 2.

We are interested here however in the shape of the models built with a stiff wire that is not tied at the

crossing points; this allows the models to adopt 3D shapes that minimize the tension created by the bent

and torsioned wire. Such a model can also be viewed as a knot with crossing points corresponding to the

polyhedron vertices. Depending on how we overlap the wire at the crossing points, we can obtain many

knots, including two well-known families, the torus and Turk’s Head knots.

For the models presented here we used hardened steel wire (music wire and memory wire), steel cable,

and round reed, and we noticed that the shapes fall into a few general categories; we summarize these

observations in two conjectures.

Torus Knots

Referring to Figure 1, we obtain a model of a torus knot by crossing the wire that follows the diagonals in one

direction over the diagonals going in the other direction. (Imagine removing the bases of a model in Figure 1

and wrapping the wire around the resulting torus.)
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(a) S5,3 (b) S15,7 (c) S9,8, flat state

(d) S4,3 (e) S9,8, 3D state (f) S7,6 bracelet

Figure 3: Torus knot

The stiff wire models will settle into different shapes depending on how much torsion we force on the

wire, i.e., how many times we twist the ends of the wire with respect to each other before joining them

together in a loop. Based on empirical observations, we identified two “natural” shapes.

Conjecture 2. The stable states of a torus model of Sm,n with m,n relatively prime and k = min(m,n), include:

(a) a flat coil that wraps around k times, and (b) a 3D shape with k lobes around a central “column”.

A model can be switched between these states with one full twist of the wire ends, see [3] for a

demonstration. Figure 3 shows a few models in their flat (c) and 3D (a,b,d,e) state.

The torus knot is symmetric in its parameters, which is hard to visualize since there is no corresponding

transformation on polyhedra. This property manifests itself in an interesting way when wrapping a stiff wire

around a torus as described above: both Sm,n and Sn,m models will settle into the same stable shapes, as

described in Conjecture 2.

The central column can be forced to open up transforming a 3D model into a flat coil. This coil, which

is different from the one in Conjecture 2 (a), wraps around max(m,n) times and will spring back to the 3D

stable state when released. We used this property to make the self-tightening bracelet in Figure 3 (f); a kinetic

toy based on this effect, usually called “Flow Ring”, is commercially available from many vendors,

In practice, Skn+1,n models can be wrapped in hand (see [3]), while other models require a special jig.

The winding of the central column of a 3D model of Sm,n tightens as |m − n| increases, which might require

making the model larger or using a softer wire (e.g., steel cable in Figure 3 (a, b)).
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(a) Mosaic at Woodchester Roman Villa, AD 325 (b) Cylindrical (c) Flat

Figure 4: Turk’s Head knots

Turk’s Head Knots

While torus knots are important in knot theory but not very interesting as real knots, the opposite is true for

Turk’s Head knots (Figure 4). Clifford W. Ashley devotes an entire chapter of his classic book [1] to this knot

and says: “There is no knot with a wider field of usefulness.”

Turk’s Head is an alternating knot, so the models are obtained by interweaving the wire; (in general,

it is always possible to perfectly interweave the straight circuits of any polyhedron with vertices of degree

4). A model of Sm,n (in knot jargon, a model of the Turk’s Head knot with m leads and n bights) will settle

into one of three possible general shapes: flat (Figures 5(a,b)); (roughly) spherical (Figures 5(c–i)); or tight

(rope-like) cylinder (Figure 5(j)). Unlike the torus knot, when making a Turk’s Head model we joined the

wire ends in a straightforward manner; introducing more torsion in the wire does not lead to any interesting

new shapes. The natural state of the flat models is a circular coil that wraps around m times, but, using the

friction between coils, they can be arranged into a more interesting semi-stable shape. The 3D shapes have

the symmetry of the original polyhedron, modulo the asymmetry introduced by the under/over crossings of

the wire. The cylindrical models will elongate and tighten, an effect used in the “Chinese finger trap” toys.

The stable shape is determined by the path taken by the straight circuit after it traverses a base edge and

then returns to this base. The model is flat if the circuit returns after less than one complete rotation around

the base, spherical if it makes between one and two rotations, and cylindrical if it returns after two or more

rotations (for example, follow the circuit from an edge of the central base, around a lobe, and back to the base

in the flat, or forcefully flattened, models in Figure 5(a,b,m)).

In other words, since the straight circuit advances m edges every time it returns to the base (see the

argument in the proof of Theorem 1), we believe the following is true.

Conjecture 3. The stable shape of a single-threaded Sm,n model (m and n relatively prime) is:

flat, if m < n; spherical, if n < m < 2n; and cylindrical, if m > 2n.

A Turk’s Head model is very resilient and will spring back to its stable shape when deformed (flattened,

forced to “open” etc.); in Figure 5, for example, (m) will revert to (l) and (k) will revert to (j). Similarly to

the torus knot models, this effect can be used to make kinetic jewelry pieces such as rings and bracelets.

By opening half of the model and folding it over itself, the model of S8,3 in Figure 5(n) was forced to

“double up” from its original cylindrical shape and settle into the stable spherical shape of S4,3. In principle,

this process can be repeated, turning an S4m,n model into a quadrupled Sm,n, etc. It might even be possible,

to transform an S3m,n into a tripled Sm,n by folding into thirds, etc., but we have not tried this.
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(a) S3,5 (b) S4,5 (c) S4,3

(d) S3,2 (e) S5,3 (f) S5,4

(g) S7,4 (h) S8,5 (i) S9,5 (j) S13,3 (k) Forced open

(l) S7,6 (m) S7,6, forced flat (n) S8,3 as a doubled S4,3

Figure 5: Turk’s Head models
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(a) S3,4 (b) S5,6 (compare to Figure 1 (b)) (c) S5,6 (top view)

(d) S3,4 (e) S6,5 (compare to Figure 1 (c)) (f) S5,6

Figure 6: Single-threaded tensegrity models (drinking straws, paper)

Tensegrity Models

Tensegrity models of single-threaded polyhedra are modular, built by connecting a number of long, (semi)rigid,

pieces equal to the number of vertices. Each piece end is connected to a piece middle and each middle is

connected to two ends, as described in [2]; the difference is that now, due to the single-threaded property, we

can connect all the pieces using a single loop of string that follows the straight circuit of the polyhedron. This

string still forms a knot, as described above, but the shape of the model is now given by the arrangement of the

component pieces held together by the taut string. Compared to the general method of building a tensegrity

model, where the length of the connecting strings (and thus the tension that holds the model together) has to

be adjusted separately for each connection, the single string loop allows all the connections to be tightened at

the same time, which considerably simplifies the construction process.

A few models are shown in Figure 6. The string connects to each piece twice; it goes along the long axis

of the piece (through the straw in the first row pieces) and a second time, perpendicularly, through a small

hole in the middle of the piece. The string goes freely through the pieces; by adjusting its length, before

tying it into a loop, we obtain the desired tension in the model. This process can be repeated: by loosening

the string we can collapse the model (e.g., for transport) and then tighten it again.
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Conclusions and Future Work

We identified an infinite class of “single-threaded” polyhedra related to the torus and Turk’s Head families of

knots. We explored the physical properties and 3D shapes of the models built with stiff wire and presented

tensegrity models of these polyhedra.

We plan to continue looking for single-threaded polyhedra with interesting models. A theorem in [5]

implies that we will not find any models (knots) with different, non-trivial, symmetries, but, while the variety

of symmetries is limited, many more complex braids are possible.

References

[1] C. Ashley. The Ashley Book of Knots. Mariners’ Museum Publications. Doubleday, 1944.

[2] M. Draghicescu. “A General Method for Building Topological Models of Polyhedra”. In: Bridges

Conference Proceedings. Waterloo, Ontario, Canada, July 27–31, 2017, pp. 175–182. url:

http://archive.bridgesmathart.org/2017/bridges2017-175.pdf.

[3] M. Draghicescu. How to make a torus knot. YouTube, Apr. 2020. url:

https://www.youtube.com/watch?v=28IfRJJi2yA (visited on 04/20/2020).

[4] H. Gerlach, P. Reiter, and H. von der Mosel. “The Elastic Trefoil is the Doubly Covered Circle”. In:

Archive for Rational Mechanics and Analysis 225.1 (Mar. 2017), pp. 89–139. url:

http://dx.doi.org/10.1007/s00205-017-1100-9.

[5] B. Grunbaum and G. C. Shephard. “Symmetry Groups of Knots”. In: Mathematics Magazine 58.3

(1985), pp. 161–165. url: http://www.jstor.org/stable/2689914.

[6] D. Kozlov. “Kinetic Structures of Cyclic Knots and Links as further Development of Tensegrity

Principle”. In: Procedia Engineering 165 (Dec. 2016), pp. 1897–1902.

[7] D. Kozlov. “Resilient Knots and Links As Form-Finding Structures”. In: Bridges Conference

Proceedings. Coimbra, Portugal, July 27–31, 2011, pp. 179–186. url:

http://archive.bridgesmathart.org/2011/bridges2011-179.html.

[8] J. Mallos. “DNA-inspired Basketmaking: Scaffold-Strand Construction of Wireframe Sculptures”.

In: Bridges Conference Proceedings. Waterloo, Ontario, Canada, July 27–31, 2017, pp. 57–62. url:

http://archive.bridgesmathart.org/2017/bridges2017-57.pdf.

[9] L. R. Slavik Jablan and R. Sazdanović. “Polyhedral Knots and Links”. In: Bridges Conference

Proceedings. Coimbra, Portugal, July 27–31, 2011, pp. 59–64. url:

http://archive.bridgesmathart.org/2011/bridges2011-59.html.

[10] W.-X. Wang, X.-W. Li, and W.-Y. Qiu. “Topological Construction and Characteristics of Polyhedral

Links”. In: MATCH Communications in Mathematical and in Computer Chemistry 71 (Jan. 2014),

pp. 175–184.

[11] Wikipedia contributors. Rectification (geometry) — Wikipedia, The Free Encyclopedia. [Online;

accessed 3-April-2020]. 2020. url: https://en.wikipedia.org/wiki/Rectification_(geometry).

[12] Wikipedia contributors. Rectified prism — Wikipedia, The Free Encyclopedia. [Online; accessed

28-April-2020]. 2019. url: https://en.wikipedia.org/wiki/Rectified_prism.

Draghicescu

288


