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Abstract 

Most Islamic geometric star patterns can be derived from tilings of regular polygons, and often additional non-
regular polygons are needed, especially in designs based on pentagons/decagons. Generally the angular 
relationships between the polygons are exact, but there are a few examples, mainly Mamluk with a few from the 
Seljuk Sultanate of Rum, that depend on approximations. Variations in the additional interstitial polygons 
accommodate the inaccuracies. Many more such possibilities exist, and a fairly simple spreadsheet technique 
allows for their investigation. 

 

The Polygonal Technique 

A few different methods have been used to construct the star patterns generally associated with Islamic 
culture, but the most versatile begins with a polygonal tiling. At its simplest the tiling is uniform or 
possibly k-uniform [4, pp. 58-69], but it is also common, sometimes necessary, for non-regular polygons 
to be included [3, pp. 221−253]. The tiling, or more precisely the mid-points of its edges, provides a 
template for the creation of star patterns that are constructed by drawing lines at each mid-edge that 
intersect at an angle that is characteristic of the pattern (Figure 4(d)). The constructed lines determine 
paths that turn where the lines meet, so that generally paths have alternating crossing points (at the edges 
of the tiling) and turning points, although there can be exceptional situations when a path goes through 
crossing points without an intervening turn. There are historic examples with paths that are thick 
coloured lines, possibly outlined so that they seem to weave over and under, or the paths determine the 
edges of coloured tesserae. The crossing angle relates to the underlying tiling, so that, for example, a 
pattern derived from (3.6.3.6) [4, p. 63] might have crossings at 30°, and paths on a one with decagons 
could cross at 108°. 

 While simple examples are essentially decorations of an underlying uniform tiling, it is more natural 
to consider more elaborate templates as primary polygons, which determine the visually dominant stars 
in the final pattern, embedded in a field that is filled with smaller interstitial polygons. Patterns based on 
decagons (10-gons) as primary polygons provide a paradigm, since two regular pentagons and a regular 
10-gon will fit around a single point, although the arrangement cannot be extended without leaving gaps, 
so other non-regular polygons are necessary. Two 10-gons can be arranged vertex to vertex as in Figure 
1(a) or edge to edge as in Figure 1(b), but a vertex to edge arrangement does not provide a satisfactory 
template. Wider separation is possible, for example Figure 1(c), although some modification might be 
needed to accommodate the rhombus.  

Primary polygons other than 10-gons can be used in a similar way but the pentagons will not be 
regular. The lines of symmetry of the primary polygons, which collectively constitute what Bonner calls 
a “radii matrix” [3, p. 378], are the basis of such designs. In particular neighbouring primary polygons 
share a line of symmetry, either through vertices (Figure 1(a) and (c)) or an edge (Figure 1(b)), and lines 
of symmetry  determine three edges of common pentagons (a), or four edges of a common hexagon (b).  
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                         (a)                                                  (b)                                                    (c)  

Figure 1: Decagons can be surrounded by regular pentagons but other irregular interstitial polygons 
are needed to extend the tiling. 

Locating the Primary Polygons 

Assuming that the pattern is to be periodic it will have the symmetry of one of the 17 wallpaper groups. 
The centres of primary polygons are located most naturally on points of rotational symmetry, and the 
vast majority of historical examples use no other positions. The polygon must share the symmetry of the 
global design so that, for example, if an n-gon is placed on a centre of 6-fold rotation then n must be 
divisible by 6. In principle there might be another design that has primary polygons in the same locations 
but with n odd, but of course the pattern would have lower three-fold symmetry. 

Since all regular polygons have lines of mirror symmetry there is no such restriction in principle on 
what can be located on global lines of symmetry. For example 11-gons [1] or 13-gons [2] are known 
historically. Some symmetrical examples have this polygon on a mirror-line that is perpendicular to 
another one (Figure 2(a)), so there is a right-angled triangle (shaded) with vertices at the centre of the 
polygon and a centre of rotation e.g. [ 3, pp. 456 - 457, fig. 399]. Mirror-lines that intersect at right-
angles induce a 2-fold rotation, so any n-gon located there must have n even (Figure 2(b)). Many such 
examples are known [e.g. 3, pp. 425 – 428, figs. 362 - 366], and there is one with the arrangement shown 
in Figure 2(c) that has polygons on the line joining centres of rotation [3, pp. 429 – 430, figs. 369 - 370]. 

            

                   (a)                                                 (b)                                                        (c) 

Figure 2: Some possible locations for primary polygons. Polygons indicated by a circle need only be 
regular; those indicated by an ellipse must have an even number of sides. Polygons at centres of 

rotation must share that symmetry: 4-fold in (a); 3-fold and 6-fold in (b) and (c). 

Finding Likely Polygons 

Since designs require neighbouring primary polygons to share a line of mirror symmetry, the geometry of 
arrangements such as those in Figure 2 restricts the polygons that can be used, but there are historical 
examples that cannot obey the restrictions. For example the Topkapı scroll includes the arrangement in 
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Figure 2(a) with 16-gons at the corners and 13-gons on the mirror-lines [2], so the corresponding right-
angled triangle cannot be exact. In fact the hypotenuse and one side pass through adjacent vertices of the 
16-gon, making an angle of 22.5°. It will be more convenient to work in fractions of 360°, so this angle is 
1/16 (one “step” around the polygon). The angle at the 13-gon is 5/26, between a vertex and the mid-
point of an edge (2½ steps around the polygon). The two angles add to 53/208 rather than 54/208 as 
required, and actually the “hypotenuse” is not a straight line, but the error is so small that it is not visible. 
Several such “near-miss” designs are known, but more can be found. 

A spreadsheet allows quite a simple approach. The Farey sequence of order N lists the fractions in 
lowest terms (any common factors are cancelled) between 0 and 1, with denominator not greater than N, 
in order of size. There is a standard recurrence relation to generate the terms of this sequence:  if 
successive terms in a sequence of order N are a/b and c/d then the next term has a numerator = c × int((N 
+ b)/d) – a and denominator = d × int((N + b)/d) – b (where int means integer part). Putting the first term 
as 0/1 and the second as 1/N the recurrence relation can be used to calculate subsequent terms along two 
rows of a spreadsheet. If the rows are copied into two columns then the fractions can be used to label an 
array of cells that calculate their sum. Conditional formatting can then be used to highlight the cells that 
hold a sum exactly equal to a target or within a specified range from it (supplementary material). 

Since the polygons can be either edge/edge or vertex/vertex it is convenient to use a target that is 
double the required value: ½ rather than ¼ for a right-angled triangle. The cell (indicated in Figure 3) 
corresponding to the design quoted above is labelled 1/8 (= 2/16), 5/13. It follows that the design has 16-
gons (8-gons might be possible) and 13-gons. The required angles need half of the numerators: 1 step 
around the 16-gon (or ½ step if an octagon were used) and 2½ steps around the 13-gon. 

                                                                  ↓ 

 

 

 

 

 

 

                         

→ 

 
 

Figure 3: A spreadsheet showing exact solutions (dark) and near misses (light) for the angles in a right-
angled triangle. The actual values (here rounded to the nearest integer) are not needed. 

An Example 

Consider a similar case with one of the primary polygons located on a centre of 4-fold symmetry: it must 
also have 4-fold symmetry, so not all approximations can be used. There is a further consideration: the 
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other primary polygon that lies on a mirror-line should not be too near to other centres or lines of 
symmetry, which might cause overlap. In particular it should not be too close to its mirror image. The 
angle we need should not be too far from 1/16 (see Figure 2(a)), and the other possibilities, 1/12 and 
1/20, are unlikely to be satisfactory without a union or intersection of overlapping polygons. It happens 
that an 11-gon provides another approximation that is almost as close as the 13-gon (in the same column 
in Figure 3). There is also an exact solution corresponding with the (4.82) tiling. 

The symmetry of the finished design will be *442 (or p4m in IUC notation), and the fundamental 
domain is an isosceles right-angled triangle, so the initial constructions can be restricted to this region. 
The first stage is to locate the primary polygons. The 16-gon will be centred at one of the 45° vertices. 
An approximate position of the 11-gon can be found by drawing the line that will pass through a vertex 
of the 16-gon, i.e. at 22.5° to the side of the triangle, as in Figure 4(a). The centre of the 11-gon could be 
located where this line cuts the other side of the triangle. In many cases this will be good enough, but a 
better location is found by marking the mid-point of the line and drawing another line from it making an 
angle of 2/11 (= 65.45°) with the vertical side of the triangle. The difference is hardly visible. 

The next stage is to determine the size of the primary polygons. Bonner has described a method when 
the arrangement is like Figure 1(a) [3, pp. 378-379]. Construct the incircle of the triangle formed by the 
(slightly crooked) line joining the centres already located and the lines that must pass through the next 
vertices (making angles of 1/16 and 1/11). Its centre lies at the intersection of the lines through the mid-
points of the edges. Tangents at the points where these lines cut the incircle are the required polygonal 
edges (Figure 4(b)). The other edges and the rest of the interstitial polygons (all pentagons in this case) 
can be completed since their edges are defined by lines of symmetry of the polygons (Figure 4(c)). 

       
                         (a)                                   (b)                                (c)                                   (d) 

Figure 4: Stages in constructing a star pattern. 

 

 
Figure 5: The finished design with 16-gons and 11-gons. 
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Pairs of lines can now be constructed, crossing at the mid-points of the edges of all the polygons. In 
this case a crossing angle of 45° has been used, since it is consistent with the overall symmetry as well as 
with one of the primary polygons (Figure 4(d)). An angle associated with the 11-gon is unlikely to be as 
aesthetically successful. Figure 5 shows the design that has been completed with strapwork following the 
paths in Figure 4(d) to create an interweaving effect. The supplementary material includes images of two 
other new designs. One, with 18- 15- and 11-gons, uses the same idea as Figure 2(a) applied to a tiling of 
hexagons. The other, based on a rectangle having 10-gons at its centre and corners, is more complicated 
and needed a lot of adjustment and compromise, but it gives an idea of what is possible. 

The Problem of Size 

The example described has only two types of polygon and two relationships to consider: 16-gon/11-gon, 
which is the basis of the construction, and 11-gon/11-gon, which was controlled by looking for locations 
about half-way between the mirror-line and centre of rotation. Things are not so simple if there are more 
primary polygons such as the arrangement in Figure 2(c), with more relationships. There are historical 
examples of this arrangement, which Bonner has argued are the most complex in the tradition [3, pp.428-
430]: in the courtyard portal of Seri Han near Avanos (1230-1235) and at the entry to the mosque at 
Karatay Han near Kayseri (1235-1241). It is the same design in both cases with 9-, 10-, 11- and 12-gons. 
For the purposes of discussion it will be convenient to number the four types of polygon, and the 
symmetry requirements provide a mnemonic: 

1. Polygons marked with circles in Figure 2(c), on the mirror-line joining 3-fold and 6-fold centres 
of rotation, with no symmetry requirement (11-gons in the historic examples). 

2. Polygons marked with ellipses, at the intersection of two mirror-lines, which must have 2-fold 
symmetry, so with an even number of sides (10-gons in the historic examples). 

3. Polygons marked with triangles, at centres of 3-fold symmetry, with the number of sides divisible 
by 3 (9-gons in the historic examples). 

4. Polygons marked with hexagons, at centres of 6-fold symmetry, with the number of sides 
divisible by 6 (12-gons in the historic examples). 

Suitable polygons can be found by considering the triangle defined by the centres of polygons 1, 2 and 4. 
The angles at centres 1 and 2 must sum to 5/12 (or 5/6 if the doubling approach is used), and polygon 1 
should be approximately equidistant from centres 3 and 4. There is an exact solution that locates 
polygons 1 and 2 on the edges of (3.122) that might be worth further investigation. As well as the 
historical design there are three near-misses with polygon 2 being a 14-gon, two with 13-gons and 
another with 11-gons, with the approximation particularly close in two cases. 

Each pair taken from polygons 1, 2 and 3 must connect either with pentagons or hexagons, as in 
Figure 1. There are common lines of symmetry between the polygons (approximate between 1 and 2) but 
there should also be three lines, one mirror-line from each polygon, that are approximately coincident 
(see Figure 6). Consider the point of intersection of mirror-lines (compare with Figure 4(b)) from 
polygons 1 and 2. A line from this point to centre 3 should be a mirror-line of polygon 3, and it will 
determine the number of its sides. In the historical example the line is at an angle very close to 20° to the 
line from 2, so polygon 3 is a 9-gon. It turns out that all three of the 14-gon cases have suitable angles: 
(using steps) in 4½/13, 1/14 it is close to 36° (= 1½/15); in 4/13, 1½ /14 it is close to 24° (= 1/15); and in 
3/11, 2/14 it is close to 15° (= ½ /12), giving two possibilities with 13-, 14-, and 15-gons, and another 
with 11-, 14-, and 12-gons. The vertex/vertex or edge/edge requirement of Figure 1 is satisfied in all 
three arrangements, so six arrangements are possible in principle. 

In all of the 14-gon possibilities the angle relationships work out surprisingly well, but problems arise 
with the next stage: determining the size of the primary polygons using the incircle construction of Figure 
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4(b). Figure 6(a) shows the only straightforward case: 4½/13, 1/14, 1½/15, 1/12 with the 14- and 15-gons 
vertex to vertex. Figure 6(b), 4/13, 1½/14, 1/15 with the 13- and 15-gons vertex to vertex might be made 
to work with some additional interstitial polygons. In Figure 6(c), 3/11, 2/14, ½/12, 2/24 with the 11- and 
14-gons vertex to vertex, the 11-gon and 12-gon are (almost) touching and there is an interstitial 
quadrilateral. In figure 6(d), which has the same polygons as 6(a), but with the size fixed by the 
vertex/vertex relationship between the 13-gon and 14-gon, the space between the 14- and 15-gon is too 
small for a workable hexagon, and the 13-gon is too close to the mirror-plane, and hence another 13-gon. 

 
                        (a)                                    (b)                                   (c)                                 (d) 

Figure 6: Some polygonal tilings created from arrangement 2(c) with 14-gons. 

 

Interstitial Polygons 

While in these near-miss designs the primary polygons are always regular, the interstitial polygons never 
are. Pentagons occur most frequently, and they can be regular only if they lie between two decagons. The 
incircle construction provides a method that produces what might be a good approximation to regularity, 
but it cannot be used consistently in even the simplest cases. In Figure 5, for example, the sizes of the 
underlying primary polygons have been chosen so that the pentagons between 11- and 16-gons have 
incircles. Since the 11-gons are now determined, so are the pentagons that lie between them, and they do 
not have incircles.  More complicated cases have correspondingly more incompatibilities, which can lead 
to unworkable situations, such as that in Figure 6(d). 

In fact the incircle construction does not appear in historical documents such as the Topkapı scroll. 
Circles are used, but, rather than determining polygons from which the intersecting lines are 
subsequently constructed, they directly define the intersecting lines that form the stars. Catalog Number 
35 [7, p. 252] is particularly revealing (Figure 7). The basis of the design consists of four 12-stars placed 
symmetrically around an 8-star. The centres of interstitial 5-stars are located at the intersections of 
mirror-lines of the primary stars, the size of the circumcircle of the 8-star is determined by the 
intersection of mirror-lines of two 12-stars, and the size of the circumcircles of a 12-star is determined by 
the intersection of one of its mirror-lines with one of the 8-stars (Figure 7(a)). Lines are drawn from the 
centres of the 5-stars to intersections nearby, and so they are not symmetrically placed at 36° to each 
other. There is no construction that fixes the sizes of the incircles of the stars, but the size of any one 
determines the size of the others. The intersections of an incircle with the rays from the centre mark 
turning points of the path lines, which are constructed to go through points where mirror-lines intersect 
with the circumcircles of the primary stars (Figure 7(b)). 
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This point to point construction does not depend on a tiling of polygons, and the angles of intersection 
of path lines are not identical, as they would be in a polygon construction. It might be significant that 
Hankin’s constructions [5] also use incircles of stars, and he does not use the incircle construction of 
Figure 4(b). Although he does not state it explicitly, it seems likely that such circles were included in the 
construction lines he observed in Fathpur-Sikri in India that led him to his presentation in 1905. 

                

(a)                                             (b) 

Figure 7: A design from the Topkapı scroll. (a) shows the point to point construction. The dotted 
extensions to the mirror lines are not present in the original. (b) shows completed 5-stars. 

Pentagons and hexagons as in Figure 1 are not the only possible interstitial polygons. Depending on 
the details of the pattern it can happen that gaps remain after their construction. Sometimes they work 
very well as additional interstitial polygons, and sometimes they must be modified [3, p. 306]. Difficult 
arrangements such as Figure 6(d) might be resolved by introducing addition polygons to make the 
primary polygons smaller (Figure 8), but this increases the number of interstitial polygons, possibly 
resulting in a design that is too complicated to be visually satisfying. 

In arrangements like Figure 2(c), where not all main centres of symmetry are used in the near-miss 
arrangement, there is some additional freedom. If polygon 2 were moved along either mirror line, it 
would be reflected in the other. Depending on the distance moved it could be replaced by two separate 
polygons, or, if they overlap, by their union. Many such arrangements are known in existing designs. 

 

(a)                                             (b) 

Figure 8: Interstitial polygons added to create more space between primary polygons. Further 
modification is needed, especially in (b). 
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Can Computers Help? 

There are several stages in the creation of a new design using the polygonal method: locating the primary 
polygons in a layout, such as those in Figure 2; finding polygons with suitable angle relationships; 
determining the sizes of the primary polygons; completing the tiling of polygons; constructing paths that 
intersect on the edges of the polygonal tiling; adding detail for decorative effect. The choice of layout is 
probably the least susceptible to computer assistance. Polygons can be located according to taste, based 
on one of the wallpaper groups, or, what comes to the same thing, located at vertices of a regular or semi-
regular tiling, possibly modified. The identification of suitable polygons using a spreadsheet is the 
central idea of this paper, and there is probably little to be gained by further automation. 

The incircle construction of Figure 4(b) to determine the sizes of primary polygons works well for 
simpler cases, but it has intrinsic inconsistencies. Computer optimisation techniques exist precisely to 
manage such problems that have incompatible requirements, and could be used here, although the goal is 
not obvious. Should primary polygons be spaced equally, possibly weighted depending on whether they 
are vertex to vertex or edge to edge? Should there be a cost function related to the extent to which 
pentagons fail to have an incircle? Actually the polygons are not an end in themselves. Should the goal 
be to have stars with incircles, which seems to have directed traditional designers? Can primary polygons 
deviate from regularity, which is not uncommon in historic examples [1, 2, 5]? Can path lines intersect at 
different angles, as in Figure 7(b)? 

Summary 

This paper is concerned with designing new star patterns. While it is informed by evidence from 
historical practice, it is neither concerned with reconstructing patterns that are already known, nor with 
attempts to determine what methods were used in the past. Hankin’s polygonal method [6] has been used 
because it is the only known way to draw the range of patterns made possible by this approach, but it has 
limitations. More powerful techniques that rely on computer-based methods are suggested, in the hope 
that people will be inspired to develop this form of art beyond the existing repertoire. 
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