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Abstract
Discrete dynamical systems feature a recurrent structure and rich qualitative behavior, including chaos, making them
suitable for algorithmic art. After defining an orbit of a system, we discuss techniques for aesthetically enhancing
their renderings. We use additional functions to control drawing attributes such as the point size, color, opacity and
more.

Introduction

A discrete dynamical system (DDS), or an iterative map, is a function with a fixed rule that determines the
future states by iterating on previous states. This fact alone makes DDS suitable for algorithmic art. Some
well-known examples of the use of DDS in algorithmic art include the work of Joel [3], the Bridges papers
by Krawczyk (e.g. [5, 6]), and some of the references in both papers. These works mainly focus on the
generation of drawings of strange attractors by exploiting the orbits of iterative maps. In addition to the
orbits, in this paper, we will use iterative maps to generate many other attributes of algorithmic art such as
geometric shape, color and opacity. Moreover, we will use a chaotic map to obtain pseudorandom numbers,
which will determine the geometry of one of our examples.

Planar Maps

A planar map, or a two-dimensional DDS, can be represented by the following system of equations:

xn+1 = f (xn, yn),

yn+1 = g(xn, yn),
(1)

where f : R2 → R and g : R2 → R. Starting with the initial point (x0, y0), from the system defined in (1), we
have x1 = f (x0, y0) and y1 = g(x0, y0). Similarly, x2 and y2 can be obtained via the equations x2 = f (x1, y1)

and y2 = g(x1, y1), respectively. Hence, for the initial point (x0, y0), system (1) can be used to obtain the
following (finite) orbit in the plane:

P0 = (x0, y0), P1 = (x1, y1), . . . , Pk = (xk, yk).

As an example, consider the following planar map:

xn+1 =
1
2
(xn − yn),

yn+1 =
1
2
(xn + yn).

(2)

Let P0 = (3, 1). Applying this point to system (2), we obtain P1 = (1, 2), P2 = (−
1
2,

3
2 ), P3 = (−1, 1

2 ), and
so on. Figure 1, which presents a phase diagram of the system, shows the points for 10 iterations. The line
segments connect the points so that the consecutive states can be tracked. Clearly, the points are approaching
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Figure 1: Phase diagram of discrete system (2): The orbit for the initial condition P0 = (3, 1) is shown.

the origin. Phase diagrams are graphical representations of the states of dynamical systems. For each initial
point, a phase diagram gives an ordered list of discrete points in the plane, called an orbit of the system.

A point (x∗, y∗) is said to be a fixed point of system (1) if f (x∗, y∗) = x∗ and g(x∗, y∗) = y∗. Clearly, (0, 0)
is a fixed point of system (2). There are three types of fixed points that a system may possess. A fixed point
(x∗, y∗) is called asymptotically stable if the following holds: For all starting values (x0, y0) near (x∗, y∗),
not only does the system remain near (x∗, y∗) but also (xn, yn) → (x∗, y∗) as n → ∞. A fixed point (x∗, y∗)
is called stable if for all starting values (x0, y0) near (x∗, y∗), the system remains near (x∗, y∗) but does not
converge to (x∗, y∗). A fixed point (x∗, y∗) is called unstable if it is neither asymptotically stable nor stable.

The following well-known theorem gives the stability condition of a fixed point of a planar map. Let us
first recall the Jacobi matrix J∗ for a planar map of the form given in (1), which is defined as

J∗ =
(

fx fy
gx gy

)
,

where the partial derivatives are evaluated at the fixed point (x∗, y∗).

Theorem 1 [3, p. 200]. Let J∗ be the Jacobi matrix of system (1) at the fixed point (x∗, y∗). Then, (x∗, y∗) is
an asymptotically stable fixed point if the trace-determinant condition |tr J∗ | − 1 < det J∗ < 1 holds true.

Theorem 1 gives the stability condition of the fixed point (x∗, y∗). For equation (2), the Jacobi matrix at
the fixed point (0, 0) becomes

J∗ =
( 1

2 −1
2

1
2

1
2

)
.

Since tr J∗ = 1 and det J∗ = 1
2 for system (2), the origin is asymptotically stable by Theorem 1. For this

stable fixed point, the orbit is spiraling inward (see Figure 1). There are many other qualitative behaviors of
a discrete system. References for the theory of DDSs include [2, 1]. Some interactive applets for exploring
one- and two-dimensional iterative maps and the corresponding details can be found in [4].

Example 1: Playing with Circles

In this example, we restrict the geometric objects of interest to circles/disks and generate some corresponding
outputs. We control five parameters: the point size (radius of a circle/disk), the red-green-blue (RGB) color
and the opacity (alpha).
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In a DDS, the positions of the points depend on the iteration. To generate artistic dynamics, we use the
iteration number n as the independent variable, and compute the point size, RGB color, and opacity using
functions of n. One way to control the point size is to use an increasing (resp. decreasing) function to
increase (resp. decrease) the point size in each iteration. First, let L(n) be the size of the n-th point (radius
of the n-th disk) of the orbit, and let it be defined by the linear function L(n) = (b−a)nk + a, where a and
b are non-negative real numbers and k, a non-negative integer, is the number of iterations. For n = 0, we
have L(0) = a as the size of the initial point, while the k-th iteration gives the size of the terminal point,
L(k) = b. To obtain a hyperbolic change, we define the following hyperbolic function of n: H(n) = a+bn

1+n ,

where a and b are non-negative real numbers. For the initial point, when n = 0, the point size is H(0) = a
whereas for a very large n, the point size is very close to the limiting value limn→∞ H(n) = b. By assigning
the function H to define the point size in each iteration, we obtain point size values that vary hyperbolically
from a to b. If a > b (resp. a < b), the point size is decreasing (resp. increasing). A sharper change in
the point size can also be defined by adopting the following function, which yields an exponential variation:
E(n) = 2−na + (1 − 2−n) b, where a and b are non-negative real numbers. Similarly, when n = 0 and n→∞,
we have a and b, respectively. Moreover, in place of the functions H, E or L, various other functions, e.g.,
trigonometric, polynomial, or constant, can be chosen to obtain different series of point sizes.

(a) L(n) (b) H(n) (c) E(n) (d)

Figure 2: Dynamic point sizes, color and opacity for system (2). An orbit for ten iterations is shown. The
point size decreases (a) linearly, (b) hyperbolically and (c) exponentially. In (d), the point size,

red color and opacity change linearly, exponentially and hyperbolically, respectively.

Now, as an example, we apply the functions L, H and E , with a = .6 and b = 0, to the point size
parameter of equation (2). Figure 2 shows the resulting linear, hyperbolic and exponential changes in the
point size. Similarly, for red-green-blue-alpha (RGBA) values, we may use the functions L, H and E to
generate dynamic colors and levels of opacity in the artwork. Since each of the red, green, blue and alpha
values are drawn from the interval [0, 1], in addition to the functions L, H and E , we may also use the
trigonometric functions S(n) = |sin n| and C(n) = |cos n|, where n may be expressed in degrees or radians.
When RGB is (0, 0, 0) and (1, 1, 1), we obtain black and white values, respectively. When alpha (the opacity)
is 1, we have a complete opaque color. As an example, we apply dynamic colors to Figure 2a. We fix the G
and B values at zero and exponentially vary the red value, with a starting value of 0 and a terminal value of
1, while the opacity is varied hyperbolically from 1 to 0; see Figure 2d. Alternatively, instead of taking these
functions of the iteration n, we may also define one-dimensional maps to control the point size and RGBA
parameters, which usually yields much richer dynamics, as we will see in the next example.

Now, we will present three dynamical systems and their outputs obtained using this technique.
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1. The following system with β = 0.09 yields the output shown in Figure 3a:

xn+1 = βxn − yn,

yn+1 =
xn

1 + β2 .
(3)

2. Figure 3b shows the output of the following single-parameter system with a = 2.35.

xn+1 = sin (xn − ayn),

yn+1 = a2 sin
(
y2
n − xn

)
.

(4)

3. For the following system, we exclude the interior of the disks. In this way, Figure 3c is obtained.

xn+1 = −1.9xn − yn,

yn+1 = 0.99xn.
(5)

Details about the initial points and iteration numbers can be found in Table 1. The quantity dn in the
table is defined as dn =

√
x2
n + y2

n, which is the distance from (xn, yn) to the origin. The starting and terminal
values as well as the types of functions used for the point size, color and opacity are also given. For example,
it can be seen in the table that for equation (4), the opacity (alpha) varies from 0.2 to 0.01 in accordance with
the function H(n). Similarly, for equation (5), the red color value starts at zero and ends at 1 in accordance
with the sine function S(dn).

(a) Equation (3) (b) Equation (4) (c) Equation (5)

Figure 3: The outputs of the discrete systems given by equations (3), (4) and (5).

Example 2: Neimark-Sacker Bifurcation and Controlling Chaos with Logistic Map

We now focus on an example of the attracting closed curve that appears when Neimark-Sacker bifurcation
[2] takes place. We introduce the following DDS, which exhibits this behavior when α = 0.571, β = 1.749,
µ = 0.754, k = 8.625, and the initial point (x0, y0) = (0.5, 0.5).

xn+1 = xn
(
α + βe−kyn

)
,

yn+1 = µxn
(
1 − e−kyn

)
.

(6)
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Table 1: Details on the Dynamical Systems in Example 1.

DDS Equation (3) Equation (4) Equation (5)
Initial point (−1.1,−0.6) (3, 1) (3, 1)
Point size (0.125, 0) − H(dn) (4, 0.1) − dn

2 (2, 0.1) − dn
Red (0, 1) − E(dn) (0, 1) − H(dn) (0, 1) − S(dn)
Green (0, 1) − H(dn) (0.9, 0.3) − H(dn) (0, 0.039) − H(dn)
Blue (0, 1) − H(dn) (1, 0) − S(dn) (0, 0.26) − L(n)
Alpha (0.2, 0) − H(dn) (0.2, 0.01) − H(n) (0.2, 0.1) − H(n)
Number of iterations 600 300 275
Figure 3a 3b 3c

Consider also the logistic map un+1 = run(1 − un), where 0 ≤ r ≤ 4. Note that 0 ≤ ui ≤ 1 for every
positive integer i when 0 ≤ u0 ≤ 1. We set u0 = 0.3 as the initial condition.

Themain goal here is to construct a series of line segmentsQiTi. The endpointsQi andTi are determined
by system (6) and the logistic map together. Points Pi = (xi, yi) are generated by system (6). We take Qi

as the point that satisfies the vector equation −−−→OQi = (1 − ui)
−−→
OPi + ui

−−−−→
OPi+1, where O is the origin and ui is

the number generated by the logistic map. Now consider the vector vi =
−−−−−→
PiPi+1. We rotate the vector vi by

the rotation matrix Mi(θ) =
( cos θ − sin θ

sin θ cos θ
)
, where the rotation angle is θ = 360ui degrees, and we obtain the

vector wi = Mivi. The point Ti that satisfies
−−→
OTi =

−−−→
OQi +wi is now the other point of line segment; we thus

obtain the series of line segments QiTi. See Figure 4.

Figure 4: Construction of the line segments QiTi using equation (6) and the logistic map.

When 0 < r < 1, the fixed point origin of the logistic map is asymptotically stable, and when 1 < r < 3,
the positive fixed point is asymptotically stable, resulting in stable directions for the line segments. The
logistic map also exhibits periodic orbits. For example, the case of 3 < r < 1 +

√
6 yields a period 2 orbit.

The system also exhibits chaos for some values of r . Figure 5 presents three different scenarios with various
parameter values.

Conclusions

We have presented a means of using DDSs for creating algorithmic art. Through two examples, we have
shown several possible techniques. In Example 1, although the object type was restricted to circles/disks,
we obtained a rich variety of outputs. The reason is that, in addition to the numerous behaviors a discrete
system can exhibit, we introduced dynamic point size, color and opacity parameter with values generated
using functions of the iteration number.

One of the strengths of the use of a DDS for this purpose is the availability of equations that contain
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(a) r = 2.976 (b) r = 3.008 (c) r = 3.664

Figure 5: Line segments generated by Neimark-Sacker bifurcation and the logistic map after 500 iterations.
Different parameter values lead to different directions for the sequence of line segments.

free, or tuning, parameters that allow us to specify a generative art system whose parameter space can then
be explored. As an alternative to a logistic map, as used in Example 2, one may apply another chaotic map
such as a Ricker map or tent map. A two-dimensional map that exhibits periodic/chaotic orbits, such as a
Hénon map, a baker’s map, or a gingerbreadman map can also be used.

All code was written in the open, free computer algebra system SageMath [7], version 8.4, running
on a PC with Linux (Ubuntu 18.04.1 LTS). Since the algorithm is iterative and we usually use up to 1500
iterations, it is extremely fast. In SageMath, as an output, a vector graphics image (.svg file) can be exported,
which is usually important when one wishes to obtain a large printout of an image.
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