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Abstract 
We describe the design of a sampler of  all isohedral tilings of the classic pied-de-poule tile. The sampler is a 
Hawaiian shirt, also known as Aloha shirt. This allows us to explore the wider applicability of the pied-de-poule 
motif, yet respecting the design principles of classic Hawaiian shirts. We formulate the precise inclusion and 
exclusion criteria of the set of tilings to be enumerated. By checking the various combinations of symmetries, we 
find that there are eight distinct tilings, to be included in the sampler. We also show representations of the three 
orbifolds of the corresponding symmetry groups, which are added to the shirt in the form of phantasy sea creatures, 
based on a torus, a Klein bottle and a twisted pillow.  
 

Introduction 
A sampler is a one-piece artwork in which all instances of a well-defined and finite class of patterns are 
represented [6]. It is like a gallery of patterns, packaged as one piece. Our goal is to design a sampler 
showing all isohedral tilings (tessellations) constructed by the repetition of the basic pied-de-poule tile. This 
basic tile is defined in [3]. Pied-de-poule, also known as houndstooth, is a classic weaving pattern, 
frequently used in fashion. The basic tile can be tiled in infinitely many distinct patterns, but here we restrict 
ourselves to isohedral tilings: each copy of the basic pattern is embedded in the same way in the pattern. 
How many such tilings can be made? We shall demonstrate that there are eight different isohedral tilings. 
The symmetries of a tiling belong to one of the 17 plane crystallographic groups, also known as wallpaper 
groups. The eight isohedral tilings belong to three of the plane crystallographic groups. Nowadays these 
groups are denoted in the orbifold notation developed by Conway [2]. In our sampler, we like to show 
representations of the orbifolds, not just their notation (°, ×× and 2222).  
 Our sampler will be inspired by the Hawaiian shirt, also known as Aloha shirt. Thus we explore the 
wider applicability of the pied-de-poule motif. 

      
Figure 1: Classic pied-de-poule pattern of 13 tiles (left). Essential tiling (center). One basic tile (right). 

 

We show the classic pied-de-poule tiling in Figure 1. Each tile touches only two other same-color tiles and 
the touch length is the side of one grid cell. In Figure 1 (center), we remove the coloring to show the 
essential tiling, highlighting one copy of the basic tile (amidst 12 other copies). We introduce some names 
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for the body parts of the basic tile (Figure 1, right).  There is not just one pied-de-poule [3], but an indexed 
family, one pattern for each N > 0. Here we use N = 3, the same principles work for any N > 1. 

If the tile is taken to be a puzzle piece, the question arises what kinds of patterns can be created by 
arranging the pieces. We restrict ourselves to tilings: no overlap and no gaps. We further  restrict ourselves 
to monohedral tilings (only one basic tile). It is allowed to use mirrored, translated, rotated and glide-
reflected versions of the basic tile. The pied-de-poule tiles interlock [3], because the tips are caught between 
the tails of the next tile. The tiles necessarily form strips, which can have an arbitrary length. We aim at 
infinite tessellations, working in the Euclidean plane, which extends infinitely far in both directions. Thus 
these strips appear in every tessellation and they all have a parallel orientation.  The direction of the 
translation vectors relating the tiles inside a strip can be chosen arbitrarily. Without loss of generality, we 
choose to orient the vector along the diagonal x + y = 0 in the usual Cartesian coordinate system. If the tips 
point upward and left, we call it a strip in A orientation, if the tips point downward and right, we call it B. 
If one tile in the strip is mirrored, all tiles in that strip are mirrored, as the interlocking enforces this. We 
denote such strips as Am (tips upward and left) and Bm (otherwise). 

 
Figure 2: Strips with orientation A and B. Mirrored strips with orientation Am and Bm. 

The five strips in Figure 1 (center) have the A orientation, for example. In Figure 2, all four orientations are 
shown. For the relative positioning of two adjacent strips, there are always six essentially different 
possibilities, sliding along the staircase formed by the strip’s boundary. An uncountable number of tilings 
is possible. This is far too much for our sampler and we adopt further restrictions: the tilings should be 
highly symmetric and another restriction is that they are as pied-de-poule-like (houndstooth-like) as 
possible. Before we can formulate such restrictions in a precise manner, we need a few definitions. 
 

Enumerating the Isohedral Tilings 
We aim at classifying all tilings, where we adopt the constraint introduced by Heesch and Kienzle [7] under 
the term regelmäßige Zerlegung. It is called an isohedral tessellation. A tiling is said to be isohedral if any 
pair of tiles are equivalent under a symmetry of the tiling. In other words: each tile meets its neighbors in 
precisely the same way. A non-isohedral tiling is, in an intuitive sense, less regular than an isohedral, 
because distinct copies of the tile play different roles.  Kaplan [9] writes: “The isohedral tilings play a 
valuable role in art and ornamental design. They correspond to an intuitive notion of regularity in 
monohedral tilings: every tile plays an equivalent role relative to the whole.” 
 Pied-de-poule-like means that it is possible to color the tiles in two colors (black and white, without 
loss of generality). A coloring of a tiling is a mapping from all its tiles to {black, white}. We insist that 
adjacent tiles in each strip are black and white in an alternating manner. This rule prevents the appearance 
of elongated white tiles, or elongated black tiles, which are not pied-de-poule-like at all.  Next, we avoid 
that adjacent tiles have a long same-color touch range. In the classical pied-de-poule, each tile has two 
contact points of size one (one at its long tail tip, one at its shoulder). For a given tiling and a given coloring, 
we call the sum of the length of the edges a tile has in common with same-colored neighbors its contact 
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size (the unit is the side of a grid cell). It is easy to increase the contact size by shifting the tile’s neighboring 
strip further down the staircase edge, but those solutions are not  pied-de-poule like and have to be rejected. 
We call a tiling minimal-contact colorable if it allows for a coloring in which the interlocked tiles are 
alternatingly colored and each tile’s contact size is at most two units (see Figure 3). 

 

 
Figure 3: Tile configurations to be rejected. Left: not isohedral, right: not minimal-contact colorable. 

 
Now we want to create an overview of all isohedral minimal-contact colorable tilings of our basic tile.  We 
only need to experiment with three adjacent strips: once these are positioned, the positions of all remaining 
tiles are determined by the symmetries in the configuration of these first three strips. Without loss of 
generality, we freely choose the orientation of the first strip to be A. For the second strip we have four 
possibilities: the same (A), rotated over 180o (B), mirrored (Am) and mirrored and rotated (Bm). The third 
strip has the same direction as the first strip again1.         

   
Figure 4: Isohedral minimal-contact colorable tilings. From left to right: classic pied-de-poule, modified 
pied-de-poule (both type TTTTTT), tail-to-tail pattern, shoulder-to-belly pattern (both type TG1G2TG2G1).  
At the staircase contact line between two strips, there are six different positions to place the next strip (12 
after coloring), but we find that at most two of them are minimal-contact colorable. Contact size of less 
than 2 does not occur. If there are neither rotations nor glide reflections (strip orientations AAA) we find 
                                                      
1 For consider otherwise, i.e., suppose there is an isohedral tessellation where the 3d strip is not a translated version of 
the 1st.  Then the 3d strip is either a rotated, a mirrored or a rotated & mirrored copy of the 1st. All 3 cases leads to a 
contradiction. First case (rotated): take an arbitrary tile in the 1st strip and one in the 3d. There is a rigid movement 
from the former tile to the latter: a rotation. The rotation center is between the 1st and 3d strips. As the tiling is isohedral, 
this rotation must be a symmetry of the tessellation. Thus there must be a rotational symmetry whose center is 
somewhere in the middle strip. This symmetry leaves the entire plane invariant, also the middle strip. But a strip has 
no rotational symmetry (the tile has no rotational symmetry and the interlock alignment is translation-based). This is 
a contradiction. 2nd case (mirrored): the 1st and 3d strips are related by a glide reflection, reflection line parallel to the 
strips. The reflection line lies in the middle strip, which however has no (glide) reflection. Again, a contradiction. 3d 
case (rotated & mirrored): the two outer strips are related by glide reflection, perpendicular reflection line. The middle 
strip should be invariant under the glide reflection; but it is not: again, a contradiction.  
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two good solutions, one of which is the classic pied-de-poule tiling [3]. Both have Heesch type TTTTTT 
(see [7] for the Heesch types, T means translation C twofold rotation, G glide reflection). If there are 
rotations but no glide reflections (strip orientations ABA) we find four solutions (all four having Heesch 
type TCCTCC). One of these was reported in Bridges 2012 [3], three are new. If we have no rotations but 
glide reflections (strip orientations AAmA) we find no acceptable solutions. For the case of rotations and 
glide reflections (strip orientations ABmA) we find two solutions (both TG1G2TG2G1). One solution was in 
[4] and [5], the other is new. Thus our enumeration yields 8 tilings (Figures 4 and 5). 
       

 
 

Figure 5: TCCTCC tilings. From left to right: tail-to-tail pattern, body-to-body pattern, mixed pattern 
(belly-to-belly/short-tail-to-short tail), second mixed pattern (shoulder-to-shoulder/long-tail-to-long-tail) 

.   
Constructing the Orbifolds 

 
Besides the eight patterns themselves, we also like to highlight the symmetry groups. First, we note that 
our eight tilings belong to three tiling types [7]: Heesch types TTTTTT, TCCTCC and TG1G2TG2G1.  
Tilings are special cases of wallpaper patterns and the symmetries of each wallpaper pattern form a group, 
which is a plane crystallographic group. In general, there are 17 such groups; in our case, we have three 
groups, viz. p1, pg, and p2 in IUCr notation, or °, xx and 2222  in orbifold notation. 
 There is a modern connection between tiling theory and topology. It describes the essence of a 
symmetry group as a 3D object. Thurston proposed a concept called orbifold, promoted by Conway, who 
also developed the orbifold notation [2]. The orbifold of a plane crystallographic group is formally defined 
as the quotient of the Euclidean plane under the group actions. In practice, this means that we cut or fold 
the unit cells of the tiling, put them on top of each other and identify corresponding elements.  

In Figure 6 we identify corresponding elements, here for the first pattern of Figure 5. The centers 
of rotation are indicated by small circles and the arrows indicate for each protruding corner of the tile where 
its corresponding corner would be on the next tile (but here put back onto the same tile). 
 

      
Figure 6: A tile in relation to its neighbours in TCCTCC tiling (left). Identification of corresponding 

contour elements (center). Mathematica rendering of the corresponding one-tile orbifold (right). 
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The theory of orbifolds tells us to identify corresponding edges, which sometimes is hard to do in physical 
reality. In topology, we can say: if we identify the opposite sides of a rectangle we get a torus. But the 
orbifold itself is a concept based on metric geometry (rotations, translations, etc. preserving distance). 
Saying that an orbifold is a torus formally means that it is homeomorph to a torus (it can be morphed by 
rubber transformations).  Another way to understand orbifolds is developed by Hilden et al [8], who view 
them as artifacts for stamping symmetric designs. Yet another perspective was developed, at least for two 
specific 3D forms,  in [4] where a torus and a Klein bottle were presented as a (pied-de-poule) tiling with 
just a single copy of the tile. The latter work preserves the staircase nature of the tile’s contour, working 
with diffeomorphisms rather than homeomorphisms (stretching, yet avoiding folds, wrinkles, and sharp 
edges). Here we adopt the latter perspective. Figure 7 shows three 3D printed objects, one for each of the 
three types of tiling patterns we found in the previous section. 

These 3D objects are described by equations, rendered in Mathematica. If we interpret the tile’s 
boundary, shown as a cut-line, as edges-to-be-identified, then the objects of Figure 7 approximate the 
orbifolds of our patterns, or more formally: they are diffeomorphic to the orbifolds of our patterns (except 
at the twisted pillow’s cone points). A purely topological perspective is not precise enough (using the 
homeomorphisms of topology, a twisted pillow and a sphere are indistinguishable). A diffeomorphism is a 
continuous and differentiable mapping, whose inverse exists and is also continuous and differentiable.
For the torus and the Klein bottle, we refer to Bridges 2018 [4]. The twisted pillow is new. It corresponds 
to the tail-to-tail TCCTCC pattern of Figure 6 (left).  The other TCCTCC patterns have a slightly different 
pillow. The pillow’s diffeomorphism does not introduce much distortion: it is almost possible to iron the 
surface out again and get a flat tile without much stretching. This is different from the other two 
objects, the Klein bottle and the torus, where the grid and contour are seriously deformed.
 The twisted pillow orbifold posed novel 
challenges because of the singularities at the 
four corners of the pillow. Each corner locally 
is a cone with a top angle of 90o [2]. 
Experimenting with paper models of edge-
glued pied-de-poule basic tiles we found that 
the overall twist of the pillow is about 20o 
when inflated, 45o when flat. A pillow can be 
inflated to a thickness of at least 50% of its 
width (25% of length). Some distortion seems 
unavoidable: the inflated paper models buckle 
a bit and then have both positive and negative 
curvature, for example, a saddle point appears 
in the middle of each of the four edges. A 
developable surface is also possible, in which 
case we have two sharp folds. The twisted 
pillow of Figures 6 (right) and 7 completes the 
journey began when we designed the torus and 
the Klein bottle.  

For our sampler, we give the orbifolds the 
form of phantasy sea creatures (Figure 8).

 
Design Principles and Implementation of the Sampler 

Hawaiian shirts have been developed since the early 1900s and are the result of commercial and touristic 
interaction between Hawaii and the USA (with a bit of Japanese influence). The Hawaiian shirt has been 
popularized by celebrities such as Elvis Presley and Tom Selleck. At the same time, it is a stereotype image 
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for leisure time and holidays. We refer to [10] for an overview, [12] for examples and [11] for a semiotic 
study (semiotics is about signs and meaning). The shirt has status in Hawaii, in the communities of surfers, 
of rockabilly music and in the office on “casual Friday”, which began as “aloha Friday”. At the same time, 
the shirt can also be a symbol for bad taste, for example in cartoons featuring overweight tourists.  Marcia 
Morgado describes this type of ambiguity [10]: “the shirt derives its contemporary meaning from the play 
between binary oppositions:  the transient played against the durable,  the copy played against the genuine,  
and the tawdry kitsch aesthetic played against the indigenous folk art aesthetic.” Aloha shirt is taken to be 
a synonym of the Hawaiian shirt. Usually, they are printed in cheerful colors, often showy. Typical themes 
are palm trees, hibiscus flowers, parrots, palm trees, pineapples, surfboards, the ocean, fish, turtles, boats, 
hula dancers, ukulele, “tiki” statues, cocktail glasses, etc. The sleeves are short; usually, the shirt has a flat 
collar and coconut buttons.  
 We work towards a type of Hawaiian shirts sometimes called “Tapa”, although the original term refers 
to Polynesian bark-cloth fabrics, before the Hawaiian shirt. Tapa shirts have lots of geometric motifs in 
brown and ochre colors and island themes such as sea creatures (fish, turtles), shells, tropical plants. The 
geometries and the plants/animals are organized in an overlapping system of rectangles.  

Our design is meant to stay close to this Tapa tradition, with square regions of pied-de-poule variations, 
fantasy creatures, and two more figurative graphics. The fantasy creatures (Figure 8) are a playful 
interpretation of the orbifolds, playing the role of the fish and turtles of traditional Hawaiian shirts.  

 
Figure 8: Torus-swimmer, Pillow-fish and Klein bottle-hippo, representing the orbifolds. 

The two figurative graphics are inspired by tropical themes and at the same time highlight two special styles 
that emerge from some of the eight tilings found in Section 2. The first style is “wave-like”: two tilings 
have viewed from a distance, a wave-like appearance, notably the 3d tiling in Figure 4 and the 1st in 5. In 
the graphics, we added a sailing boat to the waves. The other style is the “connected-blocks”, which appears 
from the 4th tiling in Figure 4 and the 2nd in 5. We turn that style into a patterned pineapple.  

We used sublimation printing, which is done on special paper first. Subsequently, the ink is transferred 
by a heat press or a calendar machine onto the fabric. This technique has advantages over direct printing 
and silk printing: deep colors, easy up-cycling of used garments and one-piece production without fabric 
waste. We experimented with a variety of fabrics such as elastane, polyamide and cotton/polyester mixes. 
We also experimented with laser engraving and add-on 3D printing of thermochromic and glow-in-the-dark 
filament. Figure 10 shows some of the samples.   

The garment construction is ready now; the main design drawing is in Figure 9. At the same time, we 
are exploring a few pied-de-poule orbifold-based fashion accessories (torus wrist band, twisted pillow bag, 
see the supplementary materials files). The garment design appears in an educational video for the TU/e 
Golden Ratio BOOST program. 

Summary: the shirt conveys multiple mathematical stories about the enumerated tilings, yet appears 
tropical and playful. The combined engraving and sublimation printing add depth to the fabric, making the 
shirt stylish.  

Acknowledgements: we like to thank Daisy van Loenhout, Jessica Joosse, Jingya Li, and Jasper Sterk 
for the help and support for this project. 
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Figure 9: Shirt design. The shirt conveys multiple mathematical stories about the 
enumerated tilings, yet appears tropical and playful. It combines engraving and 
sublimation printing, showing all eight pied-de-poule tilings and three orbifolds. 
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Figure 10: Experimental print 
samples. Top row (from left to 
right): laser engraving with 3D 
printed TPU on top, engraving 
with 3D printed TPU to connect 
(engraved) patch, (small) 
sublimation print, monochrome 
sublimation print on pink jersey. 
Middle row: engraving and 
sublimation printing, engraving 
with 3D printed thermochromic 
filament.  Lower row, from left to 
right: engraving with 
sublimation on top, engraving 
with partial sublimation on top, 
(small)  engraving with 
sublimation on top.  
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