
Knotty Knits are Tangles on Tori

Shashank G. Markande1 and Elisabetta A. Matsumoto2

1Georgia Institute of Technology; markande@gatech.edu
2Georgia Institute of Technology; sabetta@gatech.edu

Abstract
In this paper we outline a topological framework for constructing 2-periodic knitted stitches and an algebra for joining
stitches together to form more complicated textiles. Our topological framework can be constructed from certain
topological “moves" which correspond to “operations" that knitters make when they create a stitch. In knitting, unlike
Jacquard weaves, a set of n loops may be combined in topologically nontrivial ways to create n stitches. We define
a swatch as a mathematical construction that captures the topological manipulations a hand knitter makes. Swatches
can capture the topology of all possible 2-periodic knitted motifs: standard patterns such as garter and ribbing, cables
in which stitches connect one row of loops to a permutation of those same loops on the next row much like operators
of a braid group, and lace or pieces with shaping which use increases and decreases to disrupt the underlying square
lattice of stitches.

Introduction

(a) Schematic of a knitted fabric.
It is a periodic structure of

slip knots.

(b) Textiles with intricate
patterns are knit by

combining slip knots in
specific combinations.

Figure 1

Imagine a one-dimensional curve: entwine it
back and forth so that it fills a two-dimensional
manifold which covers an arbitrary three-
dimensional object – this computationally in-
tensive materials challenge is realized in the
ancient technology known as knitting. This
process formaking functional two-dimensional
materials from one-dimensional yarns dates
back to prehistory, with the oldest known ex-
amples found in Egypt from the 11th century
CE [1]. Knitted textiles are ubiquitous as they
are easy and affordable to create, lightweight,

portable, flexible and stretchy. As with many functional materials, the key to knitting’s extraordinary proper-
ties lies in its microstructure. The entangled structure of knitted textiles allows them to increase their length
by over 100% whilst barely stretching the constituent yarn.

From socks to performance textiles, sportswear to wearable electronics, knits are a ubiquitous part of
everyday life. The geometry and topology of the knitted microstructure is responsible for many of these
properties, even more so than their constituent fibers. But first, what constitutes a knit?

Knits and purls

Knits are composed of a periodic lattice of interlocking slip knots. (Note that these slip knots are not to be
confused with the knitting notion of slip stitches in which a stitch is moved from the left needle to the right
needle without pulling a loop from the active yarn through it.) At the most basic level, there is only one
manipulation that constitutes knitting – pulling a loop of yarn through another loop, (see Figure 1a). There
are two basic “stitches" produced by this manipulation: a knit stitch pulls a loop from the back of the fabric
toward the front, whilst a loop pulled from the front of the fabric towards the back is called a purl stitch.
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(a) Knitting begins with loops on
two needles. First you insert
the right needle tip into the
first loop on the left needle.

(b) Then you wrap the free yarn
around the right needle

clockwise.

(c) The newly formed loop of
yarn gets pulled through the

loop on the left needle.

(d) Lastly, you slide the loop off
of the left needle. It is now
captured by the loop you just
made and both are caught on

the right needle.
Figure 2: The process of hand knitting.

These stitches are actually the same; when viewed from the back, a knit stitch is a purl stitch. Combining
these two motifs, there exist thousands of patterns of stitches with immense complexity, each of which has
different elastic behavior (see Figure 1b).

A piece of plain-knitted or weft-knit fabric contains only one thread which zigzags back and forth
horizontally through the length of the fabric. The process of knitting threads a loop from the active yarn
through loops from the previous row. Consecutive knitted stitches are connected to one another horizontally,
a direction known as the course. Knitted fabric is held together by a square lattice of these slip knots – rows
are connected to each other vertically with slip knots. Columns of slip knots form along the vertical direction
– called the wale – connecting a single thread into a textile.

(a) Stockinette fabric is
formed by a lattice of

knit stitches.

(b) Reverse stockinette
fabric is formed by a
lattice of purl stitches.

(c) Garter fabric
alternates rows of all
knit and all purl

stitches.

(d) 1×1 ribbing alternates
columns of all knits

and all purls.

(e) Seed fabric is a
checkerboard lattice of

knits and purls.

Figure 3: Common fabrics created using knit and purl stitches. Remarkably these fabrics all have very
different elastic behaviors, despite being nearly topologically identical. (The exception to this is

stockinette and reverse stockinette, which are related by rotational symmetry.)

Using solely knit and purl stitches, thousands of distinct fabrics can be created, each with different elastic
properties. See Figure 3. Stockinette fabric is created entirely of knit stitches (Figure 3a). Likewise, reverse
stockinette is made from entirely purls (or by turning over stockinette fabric) (Figure 3b). Stockinette and
reverse stockinette have a preference for negative gaussian curvature. In both fabrics, the bottom and top curl
towards the knit side of the fabric, whilst the left and right slides curl towards the purl side. Garter fabric
alternates rows of knit stitches and purl stitches (Figure 3c). In 1×1 ribbing, knits and purl alternate, keeping
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all stitches in each column the same (Figure 3d). This fabric is very stretchy and has a corrugated appearance.
Ribbing fabric is frequently used for cuffs and collars of garments. Seed fabric is a checkerboard lattice of
knits and purl (Figure 3e). The latter three fabrics lie flat because they have a rotational symmetry in the
plane of the fabric that leaves the front and back of these fabrics indistinguishable. Stockinette and reverse
stockinette fabrics lack this symmetry and the local deformation of each knit (or purl) stitch is compounded
across the entire fabric, with the consequence that it curls. The local topology of stitches, as well as the
order in which they appear in the fabric determines the local geometry of the fabric and, therefore, its elastic
response.

Knits as knots in T2 × I

Topology and entanglement hold textiles together, yet knits are topologically trivial; because a knitted textile
is comprised of slip knots, pulling a single loose thread can unravel the entire garment. Knitting is doubly
periodic – that is, it lives on a square lattice. Thus, invoking periodic boundary conditions leaves us with a
knot that cannot be untangled, see Figure 3,6a.

↔ ↔

(a) RM-I.

↔ ↔

(b) RM-II

↔

(c) RM-III

Figure 4: These three “moves" on a
planar projection of a knot
are ambient isotopies that
leave the overall topology of

the knot unchanged.

Knot theory provides us with a natural framework to study
such entanglement problems. A knot is a nontrivial embedding
of a circle S1 into R3. Likewise, a link consists of two or more
disjoint circles embedded in R3. Two knots or links are topolog-
ically equivalent if one can be transformed into the other via a
deformation of the ambient space –known as an ambient isotopy
– that does not involve cutting the knot or letting the string pass
through itself. Knot theory studies topological descriptors of this
equivalence, known as invariants. It is important to note that
while two representations of the same knot must be characterized
by the same invariant, two knots that have the same invariant are
not necessarily equivalent.

Some branches of knot theory treat the string (the S1’s) as the
fundamental object and use the over and under crossings to create
an algebraic representation of the knotted object. Here, planar
knot diagrams – projections of the three-dimensional representa-
tion of the knot into a two-dimensional plane keeping the details of the over and under crossings of the knot.
In this framework, ambient isotopies take the form of Reidemeister moves, shown in Figure 4 [3]. There
are several invariants that are used in this algebraic framework. Some typical examples of this are linking
number – the number of times a pair of components in a link pass through one another – and Alexander
polynomials – a Laurent polynomial with integer coefficients which is created by starting with the unknot
and using polynomial generators based on changing crossings called skein relations to build up to the entire
knot of interest [7, 8].

Other branches of knot theory abandon the S1’s in favor of the knot (or link) complement which is
constructed by placing the knot or link in the 3-sphere S3 and drilling out a tubular neighborhood around the
knot or link. The resulting 3-manifold is the primary object. The 1989 theorem by Gordon and Luecke states
that topological invariants of the knot complement are also invariants of the knot itself [4, 5]. However, this is
not strictly true for links, especially when looking at fibered manifolds. The following description of knitted
knots will blend both of these descriptions, although it may be weighted a little towards the 3-manifold
representation. The knot invariants here are topological invariants of the 3-manifold. For instance, the
hyperbolic volume is the volume of the knot complement with a hyperbolic structure, and the fundamental
group of the complement [7].
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The ultimate goal of such a topological description is to create an algebra to describe any fabric using
textile knots. Such an algebra is complete if it can create all fabrics compatible with knitting. The basis set
for this algebra are all possible slip knots compatible with knitting. More complex fabrics can be created by
“adding" different stitch types together vertically and horizontally. For instance, garter is created by “adding"
a knit stitch and a purl stitch together vertically, whilst 1 × 1 ribbing is created by “adding" the same two
stitches horizontally.

Figure 5: The thickened torus is
isomorphic to
S3 − T(Hopf link)

Knits, weaves and other two-periodic textiles live naturally in
a space homeomorphic to a thickened torus, T2 × I. Normally two-
dimensional objects with periodic boundary conditions can be rep-
resented with a torus. However, knits have over and under crossings,
which give this toroidal structure some thickness. This space can
be thought of as the glaze on the outside of a donut. Unlike strictly
two-dimensional doubly periodic structures, we can’t simply iden-
tify the left edge with the edge side and the top edge and edge of the
knit diagram (see, eg, Figure 3), because the resulting knots are not
topologically equivalent [6].

We turn to 3-manifold topology in order to study these textile knots in their natural space. Any invariant
of the manifold created by removing a tubular neighborhood T from around the knot K in the 3-sphere,
denoted S3 − TK , is also an invariant of the knot K . When the knot is not embedded in ambient euclidean
space R3 (as is the case with textile knots living in T2 × I), we can create the ambient manifold by removing
a specific knot or link from S3. In particular, T2 × I is homeomorphic to S3 minus a Hopf link, a pair of
embedded circles which pass through each other’s centers.

The following is a canonical construction of the 3-manifold complement of our textile knot. We start
with a knitted stitch in the thickened torus T2 × I (Figure 6a), where the pairs of green and pairs of red sides
are identified. In Figure 6b, this is then put into S3 − T(Hopf link), where the red and green tubes designate the
Hopf link. Note, the green tube connects through infinity. The green sides of the thickened torus in Figure
6c connect by encircling the green circle of the Hopf link. This green cycle is resized to fit in the frame in
Figure 6d. The final maneuver to connect up the knitted stitch, in Figure 6e,f, identifies the red faces with
one another by wrapping around the red element of the Hopf link.

We now define standard position for a link T2 × I which has been lifted into S3 − T(Hopf link), see Figure
6g. Standard position is a canonical construction of the textile link in S3. In standard position, the identified
sides of the original thickened torus (red and green in Figure 6a) are now annuli. Each annulus has one
boundary component isotopic to the component of the Hopf link of the corresponding color. The other
boundary is punctured by the other component of the Hopf link. These annuli intersect one another along a
curve that connects the two boundary components. The course direction punctures the green surface, and the
wale punctures the red surface.

By converting this image into a two dimensional link diagram with planar crossings (Figure 6h). In
Figure 6h, there is a dashed rectangle which corresponds to a flattened version of the original knot in T2 × I.
One might ask what conditions exist on knots in the dashed rectangle such that they are knitable? Hand
knitters have an implicit notion of what a stitch is – a set of manipulations of existing loops and/or free
yarn that ends when a loop is passed from the left needle to the right needle. Unfortunately, rigorizing
this definition will always require a choice. Is there a level of complexity that is allowed by knot theory,
but no human or machine could ever physically create it? Some ambient isotopies of a bight – a small
continuous segment – of yarn, might be too complex for a knitter to do using only two needles without
additional equipment or scaffolding, however topologically, these would always be allowed. For example,
twisting a stitch an arbitrarily large number of times or creating an arbitrarily long chain of single crochet are
topologically consistent with being knitable.
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(a) The knitted stitch lives in the
manifold T2 × I. Here, green
sides are identified and red

sides are identified.

(b) In order to see the knit stitch
as a link in S3, we created
T2 × I by subtracting the
tubular neighborhood of a

Hopf link from.

(c) When the green faces are
identified, the knit stitch must

link with the green
component of the Hopf link.

(d) The green component of the
Hopf link is truly an S1

embedded in S3.

(e) When the red faces are
identified, the knit stitch must
link with the red component

of the Hopf link.

(f) The green and red surfaces in
T2 × I are a pair of annuli
that intersect along a single

line.

(g) The 2-periodic knit stitch is
now a three component link

in S3.

(h) This planar projection shows
the 2-periodic knit stitch in

standard position.

Figure 6: 2-periodic knit stitches naturally live in T2 × I. However, we can construct 2-periodic knit
stitches as three component links in S3.

For a knot to be knitable, it must be created from slip knots, which are a class of ambient isotopies of a
portion of the interval with end points fixed created by pulling bights of that line through one another. From a
knitter’s perspective, these knots can be unravelled when the both ends of the unit line are pulled on. In T2× I,
this class of knots has nontrivial homology around the longitude and trivial homology around the meridian.
Each knitted component of the link wraps around the longitude once (horizontal in the figures). Although
there is entanglement that keeps the links from coming undone along the meridian (vertical in the figures),
the knitted link components do not wrap around the meridian. Instead, they double back on themselves.
This implies that in a knitted textile, each row of stitches is connected together along one piece of yarn while
neighboring rows are pairwise trivially linked. This is apparent in standard position. The knitted component
of the link (blue) is pairwise linked with the green component of the Hopf link (the longitude) and is trivially
linked – meaning a pair of link components has linking number zero even though it might not be possible to
disentangle them – with the red component (the meridian), as shown in Figure 6h.

(a) Ribbon knot. (b) Cow-hitch schematic (c) Cow-hitch knitted

Figure 7

Since we can now construct the 3-
manifold complement of our textile knot,
by removing both the Hopf link and our
textile link from S3, we can use many
of the conventional tools from knot the-
ory to study the topological invariants of
this construction. For instance, the knot
theory and 3-manifold topology software
SnapPy [2] uses a graphical link editor to
construct the 3-manifold complement of
a knot or link in S3 from the planar knot diagram, eg Figure 6h.
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An examination of many commonly used knitable stitches reveals that all share the property that they
are ribbon. Ribbon knots are knots that bound a self-intersecting disk where all self intersections are ribbon
singularities – places where the ribbon self intersects form curves that exist only in the interior of the spanning
disk [7]. Intuitively, this is not surprising, since all knits are formed by sliding bights of yarn through each
other. We conjecture that all knits are ribbon. We will show later that being ribbon is a necessary, but not
sufficient, condition for a knot to be knitable.

What types of ribbon knots can be turned into knitable stitches? A class of potentially knitable ribbon
knots come from tying other knots or links in the bight and the knitting that into the next row. One example
of such a stitch we call the cow-hitch (shown in Figure 7). This stitch is made by tying a half hitch into the
bight and then knitting through it.

Combining stitches using annulus sums

(a) A disjoint link in S3. (b) The two components of the
link are joined by a band.

(c) Band surgery swaps arcs
along the edges of the band.

Figure 8: By joining 2-periodic knit stitches together in different ways we can generate the different fabrics
in Figure 3.

Now that we have constructed a standard position for textile knots in S3, we need to construct an algebra
for adding different stitch types together to create fabrics, as in Figure 3. In S3, a connected sum of two disjoint
knots K1 and K2, denoted by K1#K2, joins K1 and K2 according to the following procedure: (1) take planar
projections of two knots (Figure 8a), (2) find a rectangular patch where one pair of sides are arcs on each knot
(Figure 8b) and (3) join the knots by deleting the two sides of the knot in the rectangle and connecting the
other pair of sides (Figure 8c) [7]. Note the general procedure of changing the connectivity of a knot or link
according the a rectangle (as in steps (2) and (3)) is called band surgery. This has many consequences for
topological invariants. For instance, the Alexander polynomial V for K1#K2, VK1#K2 = VK1VK2 is a product
of the Alexander polynomials for each individual knot, VK1 and VK2 . This creates an algebra for building
complexity of knots in S3.

Each of the fabrics in Figure 3 are 2-periodic and can be made by combining knit and purl stitches
either laterally — as in 1 × 1 ribbing shown in Figures 9, vertically — as in garter, or both — as in seed.
Stockinette and reverse stockinette are represented by knots in T2 × I (or links in S3). We would like to create

(a) Two 2-periodic knit stitches are joined in the T2 × I model. (b) The same two stitches joined with the Hopf link in S3.

Figure 9: Two stitches joined horizontally to create 1 × 1 ribbing.
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(a) Adding stitches horizontally
by cutting two tori along

their meridians.

(b) The 3-manifolds are then
glued together along the

boundary annuli.

(c) In the S3 picture, this can be
algebraically realized using

band surgery.

(d) 1 × 1 ribbing from a
meridional annulus sum.

(e) Adding stitches vertically by
cutting two tori along their

longitudes.

(f) The 3-manifolds are then
glued together along the

boundary annuli.

(g) In the S3 picture, this can be
algebraically realized using

band surgery.

(h) Garter stitch from an
longitudinal annulus sum.

Figure 10: Annulus sum on the 3-manifold knot (or link) components defines the procedure for combining
knit and purl stitches into more complicated 2-periodic textiles.

a surgery on these knots (or links) that combines knit and purl stitches to create other 2-periodic textiles. We
construct a method for combining stitches using an annulus sum. In an annulus sum, two 3-manifolds with
toroidal boundary components (eg. the boundary of the tubular neighborhood of a knot) are each cut open
along an annulus and then the annuli on the two original 3-manifold are identified. Figure 10a-d illustrates
a longitudinal annulus sum, and Figure 10e-h demonstrate the meridional annulus sum. Consider two knit
knotsK1 andK2. These can either be viewed as two disjoint 3-manifolds T2× I−K1 and T2× I−K2 or as the
3-manifold created by the complement of two disjoint auxiliary links L1 and L2 in S3. The annulus sum is a
process to join the disjoint manifolds (or links in S3) into a single knit knot, either both along their meridians
or their longitudes. This process is not necessarily unique. For instance, if multiple link components pass
through the annulus, the gluing operation can join them in any number of ways. In our operation, we can
label components of the links in each of the original 3-manifolds and then insist they are identified during
the gluing procedure. The result is a piecewise smooth 3-manifold which is the complement of the sum of
two knitted stitches.

Adding stitches horizontally involves cutting two tori along their meridians in the T2 × I picture, or
along the annulus bounded by the green component of the Hopf link in Figure 6g in the S3 picture, see Figure
10a. In the T2 × I, cutting each 3-manifold along along its meridian leaves two boundary annuli, punctured
by the knit knot. In Figure 10b, each pair of annuli are glued together and the knit knot boundaries are
identified. In the S3 picture, the link complements are split along disks that span the meridional (green)
component of their Hopf links. These disks are then glued together, identifying the punctures made by the
knitted link components. This is equivalent to doing a pair of band surgeries on the links, shown in Figure
10c. The resulting knitted component of the link still has pairwise linking number one with the meridional
(green) link component and is trivially linked with the longitudinal (red) component. Therefore, the knitted
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link component still has trivial homology around the meridian. Figure 10d shows a simple example of this is
joining a knit link with a purl link along their meridians to create 1 × 1 ribbing.

Likewise, stitches can also be joined vertically. This process involves joining two thickened tori by
cutting along their longitudes, as shown in Figure 10e. The resulting annular boundary components are
joined together with the knitted (blue) link punctures identified (as in Figure 10f). In the S3 picture, this
involves cutting the 3-manifold along the disks spanning the longitudinal (red) component of the Hopf link
and gluing the manifold together along those boundaries (see Figure 10g). This is equivalent to performing
three band surgeries on the knit links. The vertical annulus sum adds a component to the link. This component
corresponds to another knitted knot. Each of the two knitted components (blue) link with the meridional
(green) component of the Hopf link, and they are trivially linked with each other and with the longitudinal
(red) component of the Hopf link. Garter fabric can be created by joining a knit link with a purl link along
their longitudes, as seen in Figure 10h.

Meridional and longitudinal annulus sums commute. The checkerboard lattice seen in seed fabric in
Figure 3e can be created by first creating two tori longitudinally with garter links in them and joining them
with a meridional annulus sum. The result is homeomorphic to the link generated by first creating two tori
meridionally with 1×1 ribbed knots in them and then joining them together with a longitudinal annulus sum.

Some stitch patterns cannot be made using the annulus sum

(a) A (left) knot diagram for (right) basketweave fabric
shows pairs of stitches that have been swapped, left
leaning on odd rows and right leaning on even ones.

(b) This idea can be extended to create braided cables
often seen in aran sweaters.

Figure 11: Some knitable stitches cannot be
made using the annulus sum.

There are other topologically allowed knitted stitches that
respect the 2-periodic nature of textiles. These occur
when the order of stitches within a given row is changed.
In knitting, this is known as cabling. When stitches are
moved, they can create either left leaning or right leaning
crossings, when viewed with the wale direction vertically
aligned. This creates an algebra of the rows that is analo-
gous to the Artin braid group of n strands [9]. The gener-
ators of the braid group are denoted σ, where σi acts on
strands i and i + 1 to cross strand i over i + 1; likewise,
σ−1i crosses strand i + 1 over i. For instance, the bas-
ketweave pattern in Figure 11a is generated on even rows
by σ1σ3σ5...σn and on odd rows by σ−12 σ−14 σ−16 ...σ−1

n−1.
The knotted topology of the knitted stitches also changes
the algebraic structure of the braid group, such that for
subsequent rows, it no longer has an inverse σiσ

−1
i , 1.

This implies that the structure of the knitted equivalent of
the braid group is not a group but a monoid. This is the
set of transpositions of a string of n elements. Within a
single row, any action of the braid group is valid until they
are locked into place by the subsequent row of stitches.

Cabling is a manipulation of stitches that can’t be
created by using the annulus sum process shown in Figure
10. We will construct a type of surgery on the manifold that allows us to create transpositions between
elements. It is necessary to keep in mind that, as with braids, transpositions have a sense of orientation, either
element i passes over i + 1 or vice versa. We will incorporate these transformations into the connected sum
algebra we have created for addition of different stitches into a period fabric. A single transposition, as in
Figure 11a, involves interchanging two stitches. However, in more complicated cables, e.g. the braided cable
in Figure 11b, two groups of consecutive stitches are interchanged, but this does not need to happen pairwise.
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(a) An m × n unknit begins with n disjoint,
unlinked longitudinal circles and m disjoint

circles with trivial homology.

← RM1

← RM2→

← RM3

(b) Ambient isotopy between bights of the
disjoint circles and the longitudinal

circles.

(c) Band surgery joins the m disjoint circles to
one of the n longitudinal circles.

(d) An m × n swatch in T2 × I.

Figure 12: Construction of and m × n swatch.

The swatch construction of all knitted textiles

Although these more complicatedmulti-stitch objects cannot be constructed from basic knit and purl elements
using annulus sums, they do fit into our framework of links in T2 × I. This construction, which we call a
swatch, is an entirely general construction that can be used to create any knitted motif. A swatch begins with
an n-stranded unknit, made from n disjoint circles along the longitude of the torus and m disjoint circles
with trivial homology, see Figure 12a. Figure 12b shows that bights of each of the m circles interacting
via ambient isotopy with one or more of the n longitudinal strands. These strands are now able to interact
with one another via ambient isotopy. Since this is a planar projection, we can use Reidemeister moves to
create these ambient isotopies. In Figure 12b, we label the specific Reidemeister moves necessary to create

(a) This 1x1 swatch
diagram contains an
additional disjoint

knot.

(b) It is connected to the
longitudinal

component of the
swatch.

(c) The resulting ribbon
knot is a motif that
cannot be created by

knitting.

Figure 13: Shows a counterexample to the claim that all ribbon knots
can be knitted.

the example motif. Note that this
procedure does not change the pair-
wise linking number of any of the
circles. Finally, each of the m
circles are joined by band surgery
to bights in the last longitudinal
strand (Figure 12c) to create the fi-
nal swatch in T2 × I (Figure 12d).
As the swatches live in T2 × I, an
k×n swatch and an l×n swatch can
be joined via a meridional annulus
sum to create a (k + l) × n swatch.
Likewise, m × k and m × l swatches
can be joined longitudinally to cre-
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ate an m × (k + l) swatch.
All of the objects we have considered thus far fit into this swatch construction. The basic knit and purl

are types of 1 × 1 swatch, as is the cow-hitch. 1 × 1 ribbing is a 2 × 1 swatch, while garter is a 1 × 2 swatch.
The basketweave structure in Figure 11a is a 4 × 2 swatch. This construction shows that all knitted link
components are ribbon. However, we can easily show that not all ribbon knots are knitable. For example,
we can take the connected sum of a ribbon knot with any of the n longitudinal circles, eg. Figure 13. The
resulting knot, when viewed as a component of knitted link joined with the Hopf link in S3 is ribbon, but it
is no longer knitable.

Summary and Conclusions

Here, we presented a topological framework for 2-periodic knitable structures as knots in T2 × I (or as a
link in S3). Using meridional and longitudinal annulus sums, we can join different primitive knit elements
together to create more complex textiles, including 1 × 1 ribbing, garter and seed fabrics. Knits allow for
multiple stitches between rows to interact with each other in non-pairwise ways, thus annulus sums cannot
create all possible knits. We define the swatch as a way to construct all knitable objects in T2 × I. Multiple
swatches can be joined together using the annulus sum to create more textiles.
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