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Abstract
Inspired by abstract mathematical animated loops like those created by David Whyte (@beesandbombs), I explore
animations based on isohedral tilings. I present a complete interactive tool for designing tiling animations, and show
a few results that I have obtained using this tool.

Introduction

Animated GIFs are a popular means of representing short segments of silent, looping animation. This
popularity is something of an anomaly—the format has long been superseded by other more capable types
of digital video. The longevity of animated GIFs can be explained by the fact that they were one of the first
(and for a time, probably the only) convenient means of representing and transmitting moving images on
the internet. Arguably they are also favoured because of their relatively compact file size, their widespread
support on social media sites, and their indelible association with memes. They are perhaps the closest
modern-day equivalent to zoetropes, simple animation viewers that were popular in the 19th century.

Animated GIFs are also popular in a small community of digital artists who produce looping ani-
mations of geometric landscapes or abstract forms. Here I am most inspired by David Whyte, known
as “beesandbombs” on social media (twitter.com/beesandbombs). His animations are usually of purely
abstract geometry, and often contain clever tricks by which the the motion can be made to return to
its starting point, creating a seamless loop ideal for the medium. Other artists working in this style
include Paolo Ceric (patakk.tumblr.com) and David Szakaly (dvdp.tumblr.com). Andreas Wannerstedt
(www.andreaswannerstedt.se) produces what he calls “oddly satisfying” loops, which are conceptually simi-
lar though his visual style is more figurative and photorealistic.

Inspired by this visual style, in 2018 I began to create a few of my own looping animated GIFs. These
were based on tilings of the plane where the tile shapes evolved according to a few simple rules. Each
animation was described by writing a short program from scratch in Processing. The results were satisfying,
but the programming effort was too great to sustain.

In this paper I offer a more complete solution: an interactive tool for authoring animated tilings. The
animations that I had previously programmed by hand can instead be designed easily via a user interface,
greatly streamlining the process. I focus on the isohedral tilings, a family of simple shapes that can be
manipulated easily in software. As a proof of concept, I also focus on a narrow world of possible animations,
but one in which interesting (and perhaps, oddly satisfying) animations may nevertheless be found.

Animated Tilings

The idea of animating a tiling is not new. The artist M.C. Escher produced numerous “regular divisions
of the plane” [9], which inspired generations of artists and mathematicians to explore figurative tilings and
animations based on them. The earliest Escheresque computer-animated tiling may be “Symmetry Test 11A”,
created by Paul Allen Newell in 1982. The most compelling contemporary animations are those by Makoto
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Nakamura (tessella.sakura.ne.jp/animation.html). For the most part they use an effect reminiscent of Escher’s
Sky and Water: shapes emerge from the tiling, perform a motion without being restricted by the constraint of
fitting together in the plane, and then recede back into the tiling. Kevin Lee has explored various techniques
for evolving the edges in a tiling [8], with the changes being rendered both in time (as an animation) and in
space (as in Escher’s Development I).

On the more abstract side, Nick Thompson’s “Glambient” (nixweb.com/glambient) was a general-
purpose tool for creating animations of arbitrary periodic tilings. It arguably operated at a low a level of
abstraction, requiring a great deal of manual labour from the animator. More recently, Roice Nelson has been
posting abstract diagrams of Euclidean and non-Euclidean tilings as @TilingBot on Twitter. In some cases,
the tilings are smoothly translated or rotated in a seamless loop.

Instead of viewing an animated tiling as a sequence of images changing in time, we can evolve the
shapes of tiles along a direction of space. Here we may draw upon two clear sources of inspiration. Escher
was a master of this form; as I have explained elsewhere [3], he used a number of visual “metamorphosis”
devices to draw tilings that change spatially. Inspired by Escher, the architect and designer William Huff
developed “parquet deformations” [2], which were designed to be more abstract and geometric exercises. I
have explored several techniques for drawing parquet deformations [3, 5], some of which are relevant here.
Temporal animations of tilings are arguably easier to construct than spatial animations, because in the latter
case the tiles are changing their shapes in the same dimension in which they are trying to interlock.

The Isohedral Tilings

In order to explain the workings of an animation system for isohedral tilings, I must first present enough
mathematical background that the terms used in the rest of the paper may be understood. Tiling theory
is a broad field within mathematics, and this section is necessarily superficial and incomplete. Grünbaum
and Shephard offer the definitive treatment of the subject [1]; my own book [4] might also provide a useful
introduction, along with extra details on algorithms and data structures for manipulating isohedral tilings in
software.

Let S be a simple shape in the plane, a topological disc bounded by a Jordan curve. A monohedral tiling
is a countable set of shapes T1,T2, . . ., each a congruent copy of S, which cover the plane with no gaps (that
is, the union of the Ti is the whole plane) and no overlaps (no point in the plane lies in the interior of more
than one tile). We refer to S as the prototile of the tiling. The tiles naturally decompose the plane into a
kind of planar subdivision, with vertices where three or more tiles meet joined by paths that run along the
shared boundaries of two neighbouring tiles. We refer to these vertices as tiling vertices. If S is a polygon,
its polygon vertices may or may not coincide with these tiling vertices; a shape vertex of a tile Ti is a polygon
corner that is not also a tiling vertex.

As a drawing in the plane, a tiling will naturally have a group of symmetries, rigid motions that map the
whole tiling to itself. Given tiles Ti and Tj , a congruence that maps Ti to Tj may or may not be a symmetry
of the tiling; if it is, we say that Ti and Tj are equivalent. When all the tiles are equivalent in this manner, the
tiling is called isohedral. Every isohedral tiling is necessarily periodic: its symmetry group is one of the 17
wallpaper groups.

Grünbaum and Shephard showed that the structure of an isohedral tiling can be distilled down to an
incidence symbol, a compact symbolic description that summarizes the relationships between a tile and
its neighbours. Every isohedral tiling has one of only 93 distinct symbols, which thereby partition the
isohedral tilings into 93 tiling types IH1, IH2, . . . , IH93 . Each type represents a family of prototiles that have
similar “personalities”: they lead to tilings with the same symmetries and topological structures, and can be
manipulated in the same ways. Figure 1 shows an example of several tilings all belonging to type IH21.

From an artistic point of view, the isohedral tilings occupy a sweet spot in the trade-off between
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IH21
Figure 1: Exploring a space of tilings. All tilings are of isohedral type IH21, with a canonical

representative shown on the left. On the right, the top row shows tilings that can result from modifying the
tiling vertex parameterization and keeping the tiling edges straight, and the bottom row shows tilings with
the same tiling vertex configuration as the example on the left but varying positions of shape vertices.

complexity and expressiveness: they are flexible enough to describe a large number of interesting shapes—
nearly all of Escher’s monohedral tilings are also isohedral [9]—while still being simple enough to encode
conveniently in software.

Previously I developed such an encoding as a basis for automatically constructing tilings in the style
of Escher’s regular divisions of the plane [6]. In this representation, the boundary of the prototile S is
decomposed into the positions of the tiling vertices (which must be same for every copy of S in the final
tiling) and the shapes of the paths that join them. The positions of the tiling vertices are determined by a small
number of degrees of freedom that I called the tiling vertex parameterization. The paths are transformed
copies of a small number of distinct path shapes; this inherent redundancy allows them to interlock when
tiles are assembled.

I recently built a new version of my old library, based on lessons learned in nearly 20 years of using
it. This library, called Tactile, offers an efficient, lightweight means of representing and manipulating
isohedral prototiles and tilings in software. It is available for C++ (github.com/isohedral/tactile) and Javascript
(github.com/isohedral/tactile-js). Part of the motivation for this paper was to develop new software that uses
the Tactile library in interesting ways.

A Tiling Animation Tool

Using the Tactile library mentioned in the previous section, I developed an interactive authoring tool for
creating animated isohedral tilings. The tool is based on keyframe animation, a well known approach used
in both hand-drawn and computer animation. In traditional cel animation, a lead animator would plan out a
shot by drawing a sparse set of “keyframes”, the animation frames most crucial in communicating an action.
A team of “inbetweeners” would then draw all the intermediate frames needed to produce smooth motion
between the keyframes. In computer animation, a keyframe records the values needed to describe an object
(for example, a character’s joint angles). The computer can generate intermediate frames by interpolating
between keyframe values. In practice, virtual characters in animated films are typically posed by hand in
nearly every frame—interpolation is not considered sufficiently expressive. For my abstract animations,
however, simple forms of interpolation are sufficient.

In keeping with the film analogy, an animation in my software consists of a contiguous sequence of
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shots. A shot is an interval of time with attached keyframes, which determine the configuration of the tiling
for the duration of that interval. The keyframes within a shot must all have the same isohedral tiling type,
thereby avoiding the thorny mathematical challenge of interpolating between fundamentally incompatible
tilings. It is the animator’s responsibility to manage continuity at the moment when one shot ends and the
next begins, by ensuring that the tilings drawn immediately before and after that moment coincide.

A single keyframe offers a large number of degrees of freedom that describe a tiling’s shape and structure,
and that are subject to interpolation within a shot. Here I provide additional details on the features of a tiling
that my software can animate, and any special considerations required for these features.

As discussed above, every isohedral tiling type comes equipped with a tiling vertex parameterization:
a small set of real-valued parameters that control the positions of the prototile’s tiling vertices. The Tactile
library maintains a set of parameters in its description of a tiling. Every keyframe records specific values for
these parameters, and intermediate values can be computed via simple linear interpolation. In particular, if
a given parameter has value p0 at time t0 and value p1 at time t1, then for any time t0 < t < t1 we can set
p = (1 − f )p0 + fp1, where f = (t − t0)/(t1 − t0).

Tactile makes no assumptions about the paths that will be drawn to connect the tiling vertices, allowing
users of the library to use whatever geometric primitives they like. Because my goal here is to create abstract
geometric animations, I use simple piecewise-linear paths (i.e., line segments joined end-to-end) for the tile’s
boundary. Furthermore, I require that for every keyframe in a shot, tile edges all have the same number
of free vertices. This restriction greatly simplifies the problem of interpolating between paths associated
with different keyframes: I linearly interpolate the x and y coordinates of the corresponding path vertices.
Future work should explore more general paths, including perhaps circular arcs and Bézier splines. However,
interpolating in an aesthetically pleasing way between two general paths is a difficult research problem; while
several practical algorithms have been proposed in the computer graphics literature, no definitive solution
exists.

I also augment the representation of a tiling with a global transformation, a combination of translation,
rotation, and uniform scaling. The transformation is stored using four numbers: a translation vector (tx, ty),
an orientation angle θ, and a scaling factor α. It would be inconvenient to store transformations as matrices,
because linear interpolation produces incorrect results when applied directly to matrix entries. By default,
rotation and scaling are applied relative to the origin in world coordinates. However, this point is arbitrary
relative to Tactile’s definition of the tiles in a tiling. I therefore define an “anchor point” (ax, ay) that serves
as the origin for scaling and rotation operations. The anchor can be placed anywhere (and animated as well);
when it is moved interactively, the interface will attempt to snap it to points of interest in the tiling (vertices,
edge midpoints, and tile centres).

When animating, we can linearly interpolate the rotation angle as well as the coordinates of the anchor
point and translation vector. However, the scaling factor requires more care. Let a shot have scale factors α0
at time t0 and α1 at time t1. The scaling function should change smoothly and monotonically from t0 to t1, but
equal increments in time should correspond to equal ratios in scale, not differences. Thus I use logarithmic
interpolation instead of linear, setting αt = α1− f

0 α
f
1 , where f = (t− t0)/(t1− t0), as before. Finally, if at a given

time we have a translation (tx, ty), an orientation θ, a scaling factor α, and an anchor position (ax, ay), we
construct the 3 × 3 homogeneous affine transformation matrix T(tx, ty)T(ax, ay)S(α)R(θ)T(−ax,−ay), where
T , S, and R correspond to standard matrix representations of translation, scaling, and rotation. Every point
in the tiling is transformed by this matrix when it is drawn.

Sometimes it can be difficult to judge the correct transformation needed to bring two tilings into perfect
coincidence at the boundary between two consecutive shots. My user interface provides tools to assist
in constructing the correct transformation. I support a limited form of “onion skinning”, a method from
traditional animation in which reference frames are made visible underneath the current one. I allow the
animator to choose any keyframe as a reference, with the current keyframe is drawn semi-transparently over
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Figure 2: A screenshot showing the animation system in operation. From left to right along the top, the
window contains a console with controls and options, an editor for the current prototile, and a viewer/editor
for the transformed tiling. The bottom contains a timeline divided into shots, with keyframes in red and blue.

it. Often this superposition is enough to produce the correct transformation through interactive manipulation.
When more precision is needed, it is possible to define a “reference segment” in each of the lower and upper
layers. The reference segment can be drawn interactively, and its endpoints snap to features in the same way
as anchor points. When needed, the upper tiling will be transformed so that its reference segment is brought
into perfect alignment with that of the reference tiling.

In some cases, pure linear interpolation is too rigid to produce a pleasing animation. After all, real-
world objects have inertia and cannot change abruptly from a resting state to motion at a constant speed. In
many of Whyte’s animation loops, individual motions accelerate to full speed and then decelerate to a stop.
Accordingly, in my software every shot is assigned one of several easingmodes to simulate acceleration at the
beginning of the shot’s motion, deceleration at the end, or both. Easing is implemented on top of pure linear
interpolation by altering the times at which frames are sampled. Let ω(x) be an easing function, typically a
monotonic function with ω(0) = 0 and ω(1) = 1, applied to a shot with start time ts and end time te. Given
a set of equally spaced time samples ts = t0 < t1 < t2 . . . < tn = te, we would apply easing by rendering
frames at times t ′i = (1− fi)ts + fite, where fi = ω((ti − ts)/(te − ts)). Easing curves have become ubiquitous
in motion graphics, web design, and user interface design, though they trace their lineage back to the early
days of computer animation [7] in the form of the “slow-in, slow-out” principle, which was itself adapted
from the core animation principles developed early on by Disney animators [10].

Developing keyframe animation software can require a significant coding effort, in particular because of
the complexity of the user interface needed to support interactive authoring. My tiling animator comprises
about 4000 lines of C++ code, and runs on top of the OpenGL graphics library with the help of a number of
open-source utility libraries. Beyond my own Tactile library, I use GLFW (www.glfw.org) to create an inter-
active OpenGL window; nanovg (github.com/memononen/nanovg) for drawing vector graphics in OpenGL
and Cairo (cairographics.org) for drawing to images and PDFs; Dear ImGui (github.com/ocornut/imgui)
for widgets like buttons and sliders; Magick++ (imagemagick.org/Magick++) to export animated GIFs; and
Niels Lohmann’s JSON library (github.com/nlohmann/json) to define a file format for reading and writing
animation files. Figure 2 shows a screenshot of the animator in operation.

Results

Armed with the system described in the previous section, it now becomes possible to explore the space of
animated isohedral tilings in search of interesting or unusual cases. Ideally, this exploration can yield a few
new design principles to guide the creation of effective animations.
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Certainly, any value controlling the shape of a tile or the arrangement of tiles in the tiling can be varied
periodically. If all such values vary with the same period, that cycle can be expressed in an animation
consisting of a single shot whose start and end points are identical. However, these animations can seem
obvious: themystery of their construction is too easily resolved. It is muchmore interesting to search for loops
that have the same uncanny aesthetic as the best of Whyte’s animations. Here we need to find unexpected
opportunities to close an animation onto itself, to leave behind a riddle that begs to be understood. I have
found a few such devices in my explorations, and below I present examples of them.

In some cases, a prototile can be deformed to the point where its boundary meets itself in one or more
locations, and pinches the tile’s interior off into multiple regions that are congruent to the original shape.
Consider for example the square prototile represented in the space of IH73, as shown in the top row of
Figure 3. When opposing edge midpoints are brought into coincidence, the prototile splits into two smaller
squares, each with side length 1/

√
2 of the original, and rotated by 45◦. If the tiling as a whole is rotated by

45◦ and scaled by
√

2 while the vertices are moving, it will arrive at a configuration congruent to the original
just as the tiles are degenerating into pairs of squares. The resulting animation loop is fascinating: it zooms
in forever without progressing towards an endpoint, in a manner reminiscent of the impossible staircase in
Escher’s Ascending and Descending. Other tiling types can yield similar loops; Figure 3 also shows two
examples where the equilateral triangles of IH90 are split first into threes, and then into fours.

A related situation can sometimes occur in which two adjacent edges of a tile collapse into a line segment.
Figure 4 shows an example based on IH71. At the point of degeneracy, the tiling collapses into what appears
to be 2× 1 rectangles. If we render only the interiors of the tiles and not the edges, adjacent rectangles of the
same colour will be perceived as joining together into squares, which once again can be used to loop back to
the start of the animation under a suitable rotation and scaling.

Turning back to the topmost example of Figure 3, if we attempt a similar deformation with a hexagonal
tiling type like IH18, a new opportunity emerges. At the point where shape vertices meet, the prototile splits
not into copies of the original hexagon, but into three 60◦ rhombs. The rhombs combine to give a tiling of
a new topology, which can be expressed using a different isohedral type such as IH36. These “topological
transitions” can add excitement to an animation, as they provide a surprising change that might seem unlikely
at first. We can then return to hexagons by reversing the change, or via a different route, as shown in Figure 5.

Many other topological transitions are possible using this system. A simple trick is to find settings for
the tiling vertex parameterization that bring tiling vertices into coincidence. At such points, hexagons can be
made to collapse into squares or triangles, for example. Figure 6 shows a “grand tour” that traverses the three
regular tilings of the plane, smoothly transitioning between each pair. In previous work [3] I documented
a number of topological transitions of this type, for use in the spatial case of parquet deformations; such
transitions are equally applicable here.

Many other interesting animations are achievable with this system; please see the supplemental files for
additional examples.

Conclusion

I have created a prototype animation tool that makes it possible to explore the intriguing world of animated
isohedral tilings. The tool streamlines the process of creating new animations that otherwise might each have
required a significant amount of custom programming.

There any many opportunities for improving the software. Most of the time, tiling vertices and shape
vertices in keyframes must be positioned very carefully: to bring two points into coincidence, for example,
or to divide a tile into recognizable shapes like squares. The interface should support more sophisticated
“snapping” tools that can guess where the user is attempting to position points, so that the point can be warped
to its mathematically correct position. For tiling vertices, this problem can be mathematically non-trivial,
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IH
73

IH
90

IH
90

0.0s 0.5s 1.0s 1.5s 1.9s

0.0s 0.25s 0.5s 0.75s 0.933s

0.0s 0.5s 1.0s 1.5s 1.9s

Figure 3: Three animations in which a single tile is split into multiple smaller copies of itself, while the
tiling transforms to bring the split copies into congruence with the original. In this paper, all animations are

shown as snapshots; animations are provided in the supplementary files.

IH
71

0.0s 0.5s 1.0s 1.5s 1.9s

Figure 4: An animation in which pairs of tiles merge along shared edges to form larger copies of the
original square prototile, while the tiling zooms out and rotates to compensate.

IH18 IH36

0.0s 0.7s 1.0s 1.6s 1.9s

Figure 5: An animation that includes a change of topological type. At the midpoint of the animation,
hexagons degenerate into 60◦ rhombs, which can then be deformed back into hexagons.
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IH6 IH17

Figure 6: A “grand tour” through the three regular tilings of the plane, with the help of two different
isohedral tiling types.

because they are coupled indirectly to the underlying tiling vertex parameterization.
The greatest challenge with this system is simply that it works best as a way to construct an animation

that I can already visualize in my mind’s eye. That is, the animator must already be quite familiar with
the isohedral tilings in order to create compelling loops. It would be interesting to explore new interface
paradigms that allow even novice users to explore this space of animations productively, or perhaps even
computer algorithms for automating the discovery of these sorts of uncanny loops.
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