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Abstract

We show how a network of ideas —a forest of trees—that constitute a 3-D tree graph of a proof in geometry both interact 
and accumulate in number and kind. Our bar graphs, adjacency matrices, and a new 3-D glass and wood sculpture 
represent ways to visualize a geometry proof (in our case, the Pythagorean Theorem) and its interacting premises.

Perspective from the Tree

Proving Euclid’s propositions from his Elements is one thing. Graphing them, on the other hand, seems a 
“no-go.” Recently, in MathOverflow, a Q. & A. math website, this query appeared: “Is anyone aware of any 
attempt to describe the dependencies of theorems [propositions]…in the form of a family tree [tree graph]…
where each node on the tree might correspond to a theorem and branches 
would indicate dependencies between theorems” [9]? 

The answer is: Yes! That is what we do. Our colleague, Jesse At-
kinson, is the first, publishing in the Bridges Math/Art Conference 
Proceedings (2016) [1] and exhibiting in the Conference’s art gallery his 
rooted and directed in-tree 3-D dependency graph for Euclid’s proof of 
the Pythagorean Theorem, Book 1, 1.47—see numbered graph in figure 
1 [2]. An in-tree directed dependency occurs when “A depends upon B 
if B is necessary in the proof of A” [1].

Dependency graphs do exist in the lit-
erature, but they are for the whole of Euclid’s 
Book 1—see e.g., figure 2 (Lewis Carroll) 
[5]. More recently, Schiefsky (2007)[11], 
Boxer and Clutter (2016) [4], and Boman’s 
group (2014) [3] produce similar graphs (none 
shown here). However, these dependency 
:graphs are not for a single proof such as Eu-
clid’s 1.47, hence none is a “family tree.” Put 
another way, there is no root in their graphs.

All edges (connections) in our 3-D 
graphs direct towards the root of the tree 
because that root is dependent upon all the
premises (vertices, nodes) for its proof. These graphs are unique because there is

a proof for every proposition needed to prove any other proposition, should it appear as a premise. However, 
if a proposition appears more than once, we cite it but do not prove it again.

Figure 1:  3-D Tree Dependency 
Graph for the proof of the 
Pythagorean Theorem, 1.47, 
Euclid, Book 1.  Proposition 47 
is at bottom, center. Key:  White 
– Propositions; Red – Common
Notions; Blue – Postulates; Green
– Definitions [2].

Figure 2:  From Lewis Car-
roll’s Book, 1879, showing 
dependencies among all 
Propositions in Book 1,  
Euclid’s Elements [5].
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Teasing the Tree

The tree graph in figure 1 displays all of the direct and indirect premises used to prove proposition, 1.47 
from Heath’s Euclid. These premises include other propositions from Book 1, one proposition from Book 
2 in some models, as well as some or all of the Common Notions, Postulates, and Definitions from Book 1.

Our project is to “tease” apart Euclid’s proofs and look at each premise’s appearance. For example, 
we ask how many times (number of appearances) Proposition 1.1 appears in the expanded proof and give it 
an A-K number—see figure 3. Also, we determine at what level a premise makes its first appearance and 
what its highest level is, e.g., its furthest distance from its root? There are seven levels in the proof for 1.47.

By “level,” we understand the number of 
nodes or vertices that the dependency passes 
through from the root to a given premise, i.e., 
the passage from the root through the direct 
and the indirect premises. We display the data 
for the number of appearances in the bar graph 
in figure 3. 

We compile our data from our generic 2-D 
tree graph (not shown) that includes the suggest-
ed annotations for premises for the Pythagorean 
Theorem (1.47) from four sources—Heath [8], 
Heiberg/Fitzpatrick [7], Clark University [6], 
and Neuenschwander [10]—on the principle 
that “more heads are better than two.” Not sur-
prisingly, not all agree on what constitutes a 
premise in Euclid’s proof. Playing no favorites, 
we use all of their suggestions except those of 

Neuenschwander for the Common Notions—he substitutes for these what he calls “axioms” and re-writes 
that part of Euclid’s text with some “new” axioms. We keep Euclid’s original five Common Notions in our 
data and count Neuenschwander’s citations only when his axioms correspond to one of Euclid’s five Common 
Notions. Taken as a whole, these annotations 
constitute 1.47’s toolbox—its repertoire, as 
we like to call it. It is our generic data.

 
In addition to constructing bar graphs, 

we present our data in adjacency matrices 
(fig. 4), another format for displaying the rela-
tionships among the premises of proven prop-
ositions. Schiefsky [11] does a similar matrix 
for all of Book 1 with axes being propositions, 
but nowhere have we found a matrix similar 
to figure 4 where one axis is propositions and 
the other is Common Notions, Postulates, and 
Definitions. In fact, other dependency graphs 
do not include any of these latter three types 
of premises, though for completion of the 
proof tree, we believe they should.

Figure 3:  A-K Collaboration graph showing number 
of appearances in Euclid’s proof for all direct and indi-
rect premises for 1.47, Book 1, Elements. A-K Numbers, 
in analogy with Erdös numbers, indicate the number of 
citations or collaborations in a proof for a given premise.  
“A” is Atkinson; “K” is Knight. The A-K Number is a new 
measure we introduce into the literature.

Figure 4:  Modified Adjacency Matrix showing distribution 
of Common Notions, Postulates, and Definitions throughout 
the propositions used in Euclid’s proof of the Pythagorean 
Theorem, 1.47.  If a premise appears more than once in a 
proof, we cite it. In some cases, there are four citations. Ab-
scissa=Propositions, Ordinate=C.N., P., and D.
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Schiefsky’s matrix for Book 1 [11], mentioned above, shows results very similar to ours for a Proposi-
tions X Propositions matrix (neither shown here). However, our data is for the Pythagorean Theorem alone. 
Given the amount of space 1.47 takes in Book 1, perhaps this is not unexpected.

A Forest among the Tree

Being mindful that truth is beauty and that our original tree graph in figure 1 contains several kinds of 
premises, we move beyond matrices and bar graphs and use our 2-D generic data in a new 3-D sculpture of 
Euclid’s proof of Pythagorean Theorem—figure 5. Our original tree becomes a forest of trees. 

Each kind of premise appears separated from the others in the seven levels that the proof occupies. 
For example, Definitions in levels 2, 4, 5 and 7, appear as the smallest wooden spheres. Similarly, if Tech-
nological Q.E.F. (Construction) Propositions (e.g., Euclid’s 1.1) are in levels 3, 5, and 7, they appear there 
as larger wooden spheres. These new “trees” are not dependency tree graphs in the sense understood up to 
now. They are just trees, made up of similar kinds of premises that occur at different levels.

Three other kinds of “trees” exist in the forest—Logical Q.E.D. (Inference) Propositions, Common 
Notions, and Postulates. In total, there are 26 construction propositions, 63 logical propositions, 15 defini-
tions, 43 common notions, and 45 postulates in the 5 trees in our forest. 

All these premises and their root occur in figure 5, our prototype sculpture. Each of the seven levels is a 
glass surface, 24" x 18", with an overall height of 16.5", pillared by 2" wood cubes. At ground level, there are 
5 wooden spheres (the largest ones), each representing the root of their tree, 1.47. All spheres and pillars are 
either maple (Acer) or birch (Betula), two genera common in ancient Greece. Acrylic plates replace the glass 
surfaces when the sculpture travels, and another version color codes the 5 kinds of trees.

An unexpected consequence 
of the new 3-D sculpture is that 
the spheres at each level reflect 
below that level’s surface, as if 
reaching towards its predecessor, 
as one might expect given the 
in-root form of the dependency. 
Viewed from the top, the spheres 
appear as a virtual universe float-
ing in space. As in any forest, the 
levels interact with each other, 
from the ground to the canopy. 

View from the Canopy

We are aware that there are many 
proofs for the Pythagorean The-
orem; even Euclid has another 
in Book VI (6.31). However, we 
claim that if Book 1’s proof of 
1.47 is invalid, so are all its other 

Figure 5:  3-D Prototype Forest Graph sculpture in wood and glass of 
the network of premises in Euclid’s proof of the Pythagorean Theorem, 
Book 1, 1.47. See details in previous section.
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proofs. Be that as it may, we ask: What does our Pythagorean Forest teach us about this proof and, by im-
plication, others?

A sole consideration of the direct premises of a proof such as Euclid’s 1.47, for which there are 14 by 
our count, obscures the role played by the much larger number of indirect premises, of which there are 
approximately 178, depending upon who is counting. We teased apart these latter, noting their different 
kinds and analyzing their relationships to the root proposition that depends on them through our two 3-D 
tree sculptures, bar graphs, and adjacency matrices. 

Premises are ideas. We ask the significance that Common Notion (C.N.) 1 appears more often than 
any other C.N., 29 times, in fact. Postulate (P.) 1 appears 18 times, more than 3 times as often as P. 4, and 6 
more times than P. 2. There is a hierarchy here. Can one claim that a premise that appears least often is less 
important than one that appears more often? If so, important in what way—a more fundamental idea? We 
calculated the mean, mode and median distances for all premises but do not present that data here; again, 
this is data needing interpretation. We plan to do similar analyses for the structure of Euclid’s proof, 1.45, 
and already have a prototype 3-D directed dependency graph sculpture for that proposition.
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