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Abstract
We present a novel construction of three-dimensional generalizations of complex quadratic Julia set fractals. While
some extensions exist in the literature, using, e.g., quaternions, none have been able to extend the intricate fractal
nature to higher dimensions. Here we present a new approach which is based on the so-called Sullivan’s dictionary,
which builds analogies between the fields of complex dynamics and Kleinian groups. Here Julia sets correspond to
Kleinian limit sets, which have known extensions to 3D. By taking a special Kleinian group and its 3D extension,
we can obtain information about the sought generalization of Julia sets. This leads to two extensions – the simpler
‘inflated’ Julia sets, and truly fractal 3D Julia sets which we were able to construct in several special cases.

Mandelbrot and Julia sets

The Mandelbrot set is one of the most recognizable, visually intriguing complex objects in mathematics.
As such, it has played an important role in the popularization of mathematics as well as raising interest and
attracting prospective students. The Mandelbrot set is defined by an elementary iterative procedure in the
complex plane which, although very simple, gives rise to an extremely complicated intricate fractal object
with deep mathematical properties, cf. [4]. The Mandelbrot set itself represents a ‘catalogue’ of quadratic
Julia sets. The basis of these sets is the study of the iteration of a simple quadratic mapping

fc(z) = z2 + c (1)

in the complex plane C , where c ∈C is a given constant. The filled-in Julia set of fc is the set of all z0 ∈C
such that the iterates zn+1 = fc(zn) do not converge to infinity. The Julia set is then the boundary of the
filled-in Julia set, cf. Figure 1 (bottom) for c =−1, the so-called Basilica set. Finally, the Mandelbrot set is
the set of c ∈ C such that the Julia set of fc is a connected set.

Since its discovery, people have tried to generalize the Mandelbrot set to higher dimensions than the
2D complex plane. Disappointingly, the natural extension of (1) from C to the four-dimensional algebra of
quaternions is trivial, the resulting Mandelbrot and Julia sets are simple 4D rotations of the complex sets.
Many other possible generalizations of (1) have been tested, based on exotic algebraic structures (bicomplex
numbers, Clifford algebras, ...), geometric heuristics mimicking the behavior of (1) (Mandelbulb, Mandel-
box, ...), etc., cf. [2]. None of these generalizations were able to extend the intricate fractal nature of the
complex case as well as produce mathematically interesting objects. Here we present possible generaliza-
tions based on well established connections between the fields of complex dynamics and Kleinian groups.

Kleinian limit sets

We consider Möbius transformations, i.e., functions of the form az+b
cz+d acting on C , where ad− bc 6= 0 to

ensure the mapping is bijective. These mappings can alternatively be characterised as a composition of a
finite number of circle inversions (here a line is considered as a circle with infinite diameter). Without going
into technical details, a Kleinian group Γ is a discrete group of Möbius transformations. In our context,
we consider groups consisting of a finite number of Möbius transforms (generators) along with all possible
compositions of these functions and their inverses.
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If one takes an arbitrary point w ∈ C and applies each g ∈ Γ to it, the resulting points will accumulate
on the limit set of Γ. Similarly to Julia sets, Kleinian limit sets are very beautiful objects with a complicated
fractal structure. Figure 1 (top) is an example of a simple limit set of a group with two generating functions.

Figure 1: Kleinian limit set (top) and Basilica Julia set (bottom).

From Figure 1 it seems that there must be some underlying deeper connection between Julia sets and
Kleinian limit sets, as they possess similar structure. Indeed this is the case as realised by Dennis Sullivan in
the 1980s – the so-called Sullivan’s dictionary translates corresponding concepts and theorems from the two
respective fields. Here Julia sets of rational maps correspond to Kleinian limit sets, cf. [4] for an overview.

The idea presented in this contribution is that while natural higher-dimensional extensions of Julia sets
are unknown, for Kleinian limit sets such generalizations are well known, cf. [5]. Figure 4 (top) shows a
possible extension of the limit set from Figure 1 to 3D. We encourage the reader to examine the wonderful
pictures of these sets created by Jos Leys, [3]. Hopefully, one could use the known 3D generalizations of
Kleinian limit sets to gain insight or even construct the unknown 3D Julia sets.

Construction of generalized 3D Julia sets

The key to the chaotic and fractal nature of quadratic Julia sets is the function z2 which figures in (1) and most
attempts to generalize Mandelbrot and Julia sets focus on finding a suitable generalization of the complex
function z2 to the three-dimensional space. In our case, we wish to gain insight about such a generalization
from the connection with Kleinian limit sets. We note that in the first step, one can consider the action of z2

on the unit circle in C – here z2 corresponds to doubling the angle of z when taken in polar form.
One must first endeavor to explicitly construct this connection in the complex case, where both Julia

and Kleinian limit sets are known and then extend the Kleinian group to 3D. To this end, we consider a
special Kleinian group Γ with two generating functions:

1. g1 is the inversion in circle C1 with center −2 and radius
√

3 composed with reflection in the real line,
2. g2 maps the interior of the circle C2 with center 1 +

√
3i and radius

√
3 to the exterior of the circle C3

with center 1−
√

3i and radius
√

3 and vice versa. The configuration is sketched in Figure 2 (left).
Both g1,g2 and their inverses preserve the unit circle C0 in C , which is also the limit set. If we denote the

intersection points of C1,C2 and C3 with C0 as A = 1,B =−1
2 +

√
3

2 i and C =−1
2−

√
3

2 i, then g2(A) = A = A2,
g1(B) = g2(B) = C = B2 and g1(C) = g2(C) = B = C2. Therefore, on A,B,C, the functions g1 and g2
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Figure 2: Left: Construction of generators. Center: Action of generators on individual arcs. Right:
Squaring map on the unit circle (red) and its Kleinian approximation (blue) as maps on [0,2π).

coincide with the function z2. On the rest of C0, g2 maps the shorter arc AB to the longer arc AC in a one-to-
one fashion. Similarly, g1 maps the shorter arc BC to the longer arc CB and g−1

2 maps the shorter arc CA to
the longer arc BA, cf. Figure 2 (center). One can easily see that the function z2 maps the mentioned arcs in
the same way. Therefore, using g1,g2 and g−1

2 , one can construct a function h on C0 which behaves like z2,
cf. Figure 2 (right). Specifically, it can be proven that f (z) = z2 and h are topologically conjugate, i.e., there
exists a homeomorphism ϕ on C0 such that h = ϕ−1( f (ϕ)) on C0. This implies by induction that the iterates
of h and f are in the same relation: h◦n = ϕ−1( f ◦n(ϕ)), hence the two functions have the same behavior
under iteration, cf. [1]. The behavior of z2 outside the unit circle can be obtained by simple radial scaling.

Figure 3: 3D invariant set of Kleinian group (top) and ”inflated” Julia set (bottom).

Now the group Γ can be simply extended to 3D, where inversions in circles are replaced by inversions
in spheres with the same center and radius. If we denote the sphere with center X and radius r by Sr(X), then
we consider two possible extensions of Γ to 3D:
1. Γ̃1: g1 is the inversion in S√3(−2,0,0) and reflection in {y = 0}, g2 maps the interior of S√3(1,

√
3,0) to

the exterior of S√3(1,−
√

3,0) and vice versa.
2. Γ̃2: to Γ̃1 we add a third generator g3 which maps the interior of S√3(1,0,

√
3) to the exterior of

S√3(1,0,−
√

3) and vice versa.
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Both Γ̃1 and Γ̃2 preserve the unit sphere, which is the limit set of Γ̃2, but only an invariant set of
Γ̃1 (the limit set is smallest invariant set, i.e., the unit circle). Going from Γ to Γ̃1 and finally Γ̃2 can be
demonstrated on the example of the limit set from Figure 1, which unlike the unit circle and sphere has a
fractal nature. Then going from Γ to Γ̃1 corresponds to the invariant set in Figure 3 (top), where the fractal
nature is essentially two-dimensional. Finally, going from Γ to Γ̃2 gives the limit set in Figure 4 (top), where
the fractal nature is truly three-dimensional.

One can now endeavor to gain insight on the dynamics of possible generalizations of z2, namely on
the unit sphere, similarly as above. This leads to two possible 3D versions. First, the so-called ‘inflated’
Julia sets, which stem from considering the dynamics of Γ̃1 on the unit sphere. These mimic the essentially
two-dimensional fractal nature of the resulting 3D object, Figure 3. Second, by considering the dynamics of
Γ̃2 on the unit sphere, one can obtain truly 3D fractal Julia sets as in Figure 4, where a 3D generalization of
the Basilica set is presented. While the ‘inflated’ Julia sets can be constructed for z2 +c for arbitrary c ∈R3,
so far the second construction is unfortunately limited to c ∈ R. Due to the rather technical nature of these
considerations and the resulting constructions, we omit them from this short note. The work is in progress.

Figure 4: 3D Kleinian limit set (top) and 3D Julia set (bottom).
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