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Abstract
We describe geared versions of Buckminster Fuller’s jitterbugmechanism, and a variant cuboctahedral mechanism. In
the cuboctahedral case, differences between the triangular and square faces led us to a numerical method to construct
acircular gears, allowing for rotation rates that vary with angle.

Introduction

In 1948, Buckminster Fuller discovered the jitterbug mechanism, a linkage consisting of eight rigid triangular
faces joined at their corners by point hinges. The jitterbug expands from an octahedral to a cuboctahedral
shape by twisting neighbouring triangles in opposite directions. See Figure 1 (a-c). However, this original
version of the jitterbug has more than a single degree of freedom; other modes of movement are possible. In
1974, Dennis Dreher discovered that one could restrict the motion to only the expanding mode by replacing
the point hinges between triangles with pairs of linear hinges attached to an intermediate part. See Figure 1
(d-f). Following Kiper and Söylemez [2], we refer to these intermediate parts as DAP parts, where “DAP”
stands for “dihedral angle preserving”, as they enforce the angle between the normals of adjacent triangular
parts. See Schwabe [4] for a brief history of the jitterbug mechanism.

(a) (b) (c)

(d) (e) (f)

Figure 1: (a-c) The jitterbug mechanism with point hinges.
(d-f) The jitterbug mechanism with DAP parts.

Our first contribution is to add bevel
gear teeth onto the two triangular parts that
mesh in the vicinity of a DAP part. Math-
ematically, the DAP parts reduce the possi-
blemotion of the jitterbug to a single degree
of freedom. However, the real world does
not behave: play in the hinges can result in
the mechanism departing from this path to
the extent that it can jam. The added gear
teeth work in concert with the DAP parts to
enforce preservation of the dihedral angles.
Furthermore, the teeth constrain the relative
rotation rates of the triangular parts. Both
of these effects help to restrict the motion
of the physical model to the desired single
degree of freedom, resulting in a smoother
mechanism.

Verheyen [5], Kiper and Söylemez [2],
and others have investigated generalizations
of the jitterbugmechanism to other polyhedra. We apply our gearing technique to another example: a jitterbug
mechanism based on a cuboctahedron which expands to form a rhombicuboctahedron. Here the gear design
is complicated by the fact that the triangular and square faces of the mechanism must rotate at different,
varying rates as the mechanism expands.
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Gearing the Jitterbug

Figure 2: Making conical gears.

To design the bevel gears for our octahedral jitterbug mech-
anism, we used a two-dimensional profile for involute
gears [1], coned to a point. Standard circular gears have
parallel axes, while bevel gears have axes that intersect at a
point. To construct a pair of bevel gears, take a pair of gears
with parallel axes and rotate one of them about the common
tangent vector to the two midcurves of the gears – curves
of common tangency without teeth (here drawn dashed in
Figure 2). The axes of the gears now meet in a single point.
Coning the gear faces to this intersection point creates a set
of bevel gears. The faces of the gears are always perpendic-
ular to their axes, so this rotation angle determines the cone angles for both gears. The cone point for these
bevel gears is the intersection of the two hinge axes on the DAP part, which is also a vertex of the underlying
jitterbug mechanism with point hinges. The resulting geared mechanism is shown in Figure 3.

Figure 3: 3D printed geared jitterbug.

Cuboctahedral Jitterbug

Figure 4

In the octahedral jitterbug, neighbouring triangles rotate in opposite direction. In
the cuboctahedral jitterbug, the triangles all rotate in the same direction while the
squares rotate in the other. When the mechanism expands from a cuboctahedron to
a rhombicuboctahedron, the triangles rotate by 2π/3, as they do in the octahedral
design. However, the squares rotate by only π/2. Moreover, the angle of rotation of
the triangles, θ say, is not linearly related to the angle of rotation of the squares, φ
say. This makes gearing considerably more complicated than the octahedral case.

To see how to calculate the relationship between θ and φ, consider Figure 4.
Here a red square and a blue triangle are joined at a point hinge and start as faces of
a cuboctahedron. We rotate the triangle by an angle θ about an axis perpendicular

to its face, while allowing it to also move outwards along that axis. We also allow the square to rotate and
translate along its perpendicular axis. With these constraints, there is a line perpendicular to the triangle’s
axis on which the point hinge must lie. The point hinge must also lie on a cylinder centered on the square’s
axis. This line and cylinder intersect twice. One of these two intersections is the position of the hinge, and
from this we derive the following relation between the rotation angles θ of the triangle and φ of the square:
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Since the relation between θ and φ is not linear, the gears for this mechanism cannot be circular.

Acircular Gears

Consider two gears with distance one between their axles. Let the rotation angles of the driving and driven
gears be θ and φ = φ(θ) respectively. Initially we think of these gears as being toothless but rolling against
each other without slipping. The radii a(θ) and b(φ(θ)) thus add to one. Moreover, as the gears roll, no
slipping means that the arc length traversed by the driving gear between angles 0 and θ is the same as the arc
length traversed by the driven gear between angles 0 and φ, so∫ θ

0

√
a(t)2 + a′(t)2dt =

∫ φ

0

√
b(t)2 + b′(t)2dt.

For our cuboctahedron jitterbug, we have the relationship φ = φ(θ) given in equation (1), and we must solve
an integral equation to find the radii a(θ) and b(φ) that will achieve this relationship. This is difficult to solve
analytically, so we move to a numeric solution. We will use the set up shown in Figure 5.
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Figure 5

Here, the gear centered at A is the driving
gear, and the gear centered at B is the driven
gear. The driving gear has radius ai when
rotated by θi and the driven gear has comple-
mentary radius bi = 1 − ai . After the driving
gear has been rotated by an additional ∆θi , it has radius ai+1, and the additional arc length is si , where
s2i = a2

i + a2
i+1−2aiai+1 cos(∆θi ) by the law of cosines. The no slipping condition means that the driven gear

must also have arclength si , so by the law of cosines again, we get that s2i = b2i + b2
i+1−2bibi+1 cos(∆φi ). We

also know that the new radius of the driven gear must satisfy bi+1 = 1 − ai+1. Putting all of this information
together, we can solve:

Figure 6: Profiles of the triangular
and square gear

midcurves.

ai+1 =
(1 − ai )(1 − cos(∆φi )

1 − cos(∆φi ) + ai cos(∆φi ) − ai cos(∆θi )

Using the derivative φ′(θ), we can work out the initial relative
speeds of the gears, and therefore the initial value a0. We chose a
constant driving step size ∆θi = δ = π/300. From this we calculate
the driven step size ∆φi = φ((i + 1)δ) − φ(iδ). We can then generate
all of the radii ai and bi . The gear profiles we obtain by applying this
technique with equation (1) are shown in Figure 6.

Note that this numericalmethod does not suffermuch from “drift”:
so long as the gears we generate keep matching up at the corners of

subsequent triangles (as in Figure 5), then the relative rotation rates will be correct.

Adding Teeth

The midcurve of the acircular gears prescribe the required rotation rate of the square gear with respect to the
triangular gear due to the no-slip condition. However, as these just barely touch, there would be nothing except
friction to transfer torque from the triangular gear to the square gear to induce rotation. Circular gears use
involute teeth to more efficiently transfer torque. To add teeth to our acircular gears, we carve out teeth using a
linear rack (black in Figure 7) with the same total length as the arc length of themidcurve of the acircular gears.
This is similar to a method described by Laczic [3]. As the gears rotate, the midcurve of the rack is oriented
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Figure 7: Cutting teeth.

to be tangent to the midcurves of the acircular gears at the point of common
tangency. The rack also rolls without slipping along the midcurve of the acircular
gears so that as the triangular gear rolls through an angle, all three midcurves will
have moved by the same arc length. The tooth profile is the envelope of the rack
profile as this motion is executed. See Figure 8. The benefit of this design is that
the pressure angle of the teeth can be set easily by the linear rack. This ensures
that a constant torque can be transferred between gears.

(a) Gear teeth cut by the envelope of a rack profile. (b) Gear tooth profile.

Figure 8

Result

The final kinetic sculpture (Figure 9) consists of three type of parts: square faced parts (×6) which sit at
the square faces of the cuboctahedron, triangular faced parts (×8) which sit at the triangular faces of the
cuboctahedron, and connectors (×24) which align each pair of triangular/square acircular bevel gears.

Figure 9: 3D printed geared cuboctahedral jitterbug.
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