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Abstract
I describe a series of 30 ceramic works that I made to represent my research in mathematical physics. My research
is concerned with finding the potential between charged particles in a supersymmetric field theory. After some
introduction to the math and physics involved I outline how the calculation is done and the mathematics required for
it. I mostly present it through photographs of those ceramic vessels. The forms of the pots is related to the question
studied and they are all decorated with details of the calculations.

Some Physics and Mathematics Background

Quarks, QCD and Wilson Loops
One of the most important open questions in mathematical physics is the proof of quark confinement. Quarks,
the constituents of protons and neutrons, can be liberated of these composite particles only for very short
times before finding other quarks to join in forming new composites. The theory that governs them is known
as quantum chromodynamics (QCD), or the theory of strong interactions. Proving a mathematically rigorous
version of this statement is one of the Clay Mathematics Institute’s Millennium Problems [2].

A common way to characterize confinement is by measuring the potential between particles. In classical
electromagnetism (and gravity) the force F at a distance r follows the inverse square law, F(r) ∝ 1/r2, and
the potential V is (minus) the integral of that, V(r) ∝ 1/r . In confining theories we expect a force that does
not decrease with distance, so F(r) ∼ const and V(r) ∝ r . This means that the energy required to separate
particles grows with the distance.

The potential between charged particles is captured by a quantity known as a Wilson loop [13]. Math-
ematically, this is the holonomy of a vector bundle along a specified path, but it is enough for our purpose
to know that Wilson loops are defined for any closed curve C in space-time as quantum operators W[C] and
one can calculate their expectation values (quantum averages) 〈W[C]〉. Physically this captures the effect of
a charged particle transversing the path. One often considers the case of a pair of charged particles created
in the distant past, separated by a distance r and held fixed for a long time T . We effectively end up with
a Wilson loop whose path C is a rectangle of width r and length T (in the time direction). We find then
〈W[C]〉 = f (r,T) for some function f . In fact, if T is very large, we expect a scaling with T of the form

〈W[C]〉 ∼ exp(−TV(r)) .

The argument of the exponent is proportional to the potential V(r) between the particles. Now we see that in
the confining case the exponent is proportional to the area enclosed by the curve C: Tr = Area, and indeed
we can think of a flux tube stretched between the two particles trying to minimize the area.

N = 4 Supersymmetric Yang-Mills, String Theory and AdS/CFT
Most of my research is not on QCD but on another quantum field theory, known as N = 4 supersymmetric
Yang-Mills theory (SYM), or maximally supersymmetric Yang-Mills. It is not a theory of our subatomic
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quarks, but it has many features in common, including the existence of Wilson loop observables. One
striking difference is that this theory is conformal and in particular invariant under rescaling, which precludes
confinement, as in this case V(r) ∝ 1/r , like the Coulomb potential of electromagnetism. The focus of my
research [5] is to evaluate the proportionality constant in this relation, which depends on a parameter of the
theory, known as the ’t Hooft coupling, and denoted by λ.

We would like to understand the theory for all values of λ. Traditionally one studies quantum field
theories at weak coupling (small λ) in a Taylor series in terms of integrals represented by Feynman diagrams.
A remarkable fact about this particular theory is that the limit of λ → ∞ also has a simple description
as a string theory. Specifically, it is described by type IIB string theory on a space-time with geometry
AdS5 × S5 [10].1 For our purposes all we need to know is that we are dealing with strings and that AdS
space, which stands for anti-de Sitter, is a pseudo Riemannian hyperbolic space. In the following I simplify
matters and eliminate or ignore the time direction, so we can think of the space on which the string lives
as usual hyperbolic space, the realm of the famous Escher drawings [8] (S5 is the five dimensional sphere,
which plays a minor role in the following).

So if we want to evaluate Wilson loops in N = 4 SYM, we either have to do a perturbative cal-
culation, which gives the Taylor expansion around λ = 0 or some calculation in string theory. For the
string calculation, the prescription is to draw the contour C of the Wilson loop on the boundary of hy-
perbolic space and attach the string to it [11]. Like a soap film, the string tends to shrink and form a

Figure 1: Circle-6, incised and inlaid stoneware, clear glaze.
3 × 32 × 32cm.
A plate with the calculation of the circular Wilson
loop.

minimal area surface. So again we have
this picture of a flux tube stretched be-
tween the two sides of the Wilson loop
contour as in QCD, but now they are al-
lowed to extend into the 5th dimension of
our hyperbolic space, and not only remain
on the boundary.2

The simplest non-trivial Wilson
loop, that with a circular contour, W[◦],
can be evaluated exactly [9, 6, 12]. In
that case one can evaluate the Feynman
diagrams (or use fixed point and index
theorems) to find the full Taylor expan-
sion around λ = 0 summing up to the
function

〈W[◦]〉 =
2
√
λ

I1

(√
λ
)
,

where I1 is a modified Bessel function.
The asymptotic expansion of this function
at λ→∞ gives

〈W[◦]〉 →

√
2
π
λ−3/4e

√
λ ,

which agrees with calculations from
string theory in AdS space.

1This statement is not prooven in the mathematical sense. We don’t have a fully rigorous definition of either side of this duality,
but in any circumstance where we can formulate this correspondence exactly and check it, it is verified to hold.

2Mathematically we are dealing with the hyperbolic version of the Plateau problem.
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Artistic practice

For each of my research projects I choose a form to represent the topic of study, like the circular plate with
spiral writing in Figure 1 for the circular Wilson loop. I then make a series of pieces highlighting different
stages and aspects of the project. I endeavor to start making the ceramics in parallel to the research, so early
works include rough ideas and draft calculations. I render them in stoneware, often with rough writing and
sometimes in the later firing stages obscure the writing with the glaze (see e.g., Figure 9 below).

After the research is complete and published, I start using porcelain and place more refined presentations
of my final results on it. I employ finer decoration techniques, like inlay and carving and also apply precious
metal lusters. I also write its arXiv number, or its web address, as this is another representation of my results.

I now turn to present my research with V. Forini published in [5] and captured in a series of 30 pots
with the names Cusp-n for 1 ≤ n ≤ 30. In the discussion below I explain the physics and math and illustrate
it with the ceramic creations. I also try to outline some of the design elements in the choice of form and
decorations related to the math and academic practice. For example, the reference list on which our paper is
based is imprinted near the base of Cusp-20 in Figure 10.

Generalized Quark-Antiquark Potential

We want to calculate the analog of the potential between quarks, so the Wilson loop corresponding to two
parallel lines W[‖], which turns out to be much more complicated than the circle. The trick used in [5] is to
add an extra parameter to our story and instead of parallel lines, consider lines at arbitrary angles W[∠]. I
take the straight line to be the angle φ = 0 and the parallel lines to be φ = π. Now recall that the theory is
conformal and that under conformal transformations lines go to circles,3 so the case of φ = 0 is the same as
the circle described above. In all other cases, each of the rays emanating from the angle gets mapped to an
arc, and the pair forms the shapes on the right of Figure 2.
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Figure 2: Pairs of rays intersecting at angles φ = 0, π/4, π/2, 3π/4 get

mapped by different conformal transformations to pairs of intersecting

arcs, interpolating between the circle and a pair of antiparallel lines.

they are the image of two antipodal lines on the S3 × R. In all other cases the conformal

transformation to Minkowski space will give a pair of hyperbola which do not satisfy this

property and are not mutually BPS. In the limit of φ → π, where the separation of the two

lines on the cylinder is π − φ, the two hyperbola look at the vicinity of the origin like two

antiparallel lines. See Figure 1.

If we Wick-rotate S3 × R to Euclidean signature, then we can use the exponential map

to get flat Euclidean space. The pairs of lines running along the time direction get mapped

to rays intersecting at the origin. The angle between the rays is π − φ, such that for φ = 0

they form a continuous straight line. Otherwise there is a singular point.1

In this picture the path is given by

x1 = s cos
φ

2
, x2 = |s| sin φ

2
, Θ1 = cos

θ

2
, Θ2 = sign(s) sin

θ

2
. (2.2)

We can perform a conformal transformation which maps the point at infinity to finite dis-

tance, so the pair of rays get replaced by two arcs, intersecting at angle π−φ, as in Figure 2.

We can take them to be arcs of circles of radius r = 1/(1 − sin(φ/2)) centered at ±(r − 1).

These arcs pass through the points ±1. The distance between the two intersection points is

2r cos(φ/2) and diverges for φ → π like 8/(π−φ). In this limit the conformal transformation

of the cusp approximates a pair of antiparallel lines.

Cusped Wilson loops suffer from logarithmic divergences [18, 19]. This is exactly the

same as the linear time divergence of (1.2). The expectation value of the cusped loop is

1We propagate the misnomer referring to these Wilson loops as having a cusp, even though the singularity

has a finite angle.

5

Figure 2: Pairs of rays at angles φ = 0, π/4, π/2, 3π/4 get mapped by different conformal transformations
to pairs of arcs, interpolating between the circle and a pair of antiparallel lines.

Note that in the picture on the right, I kept the distance between the middle of the arcs fixed, which is again
possible by a conformal rescaling, so in the limit φ→ π, we do get two parallel lines at finite distance.

There is an extra parameter one can introduce into the problem (related to the S5 in the string picture),
which does not complicate the story by much. It is another angle that I label θ. So finally we are looking to
calculate a Wilson loop which depends on φ and θ in addition to the parameter λ. The original question, of
V(r) can be found from the residue of the pole at φ→ π (with θ = 0).

3The conformal group in four dimensions is SO(1, 5) or SO(2, 4). It is similar to the SL(2,C) Möbious transformations of the
complex plane.
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Figure 3: Cusp-21, inlaid porcelain, clear glaze and gold luster. 30 × 32 × 6cm.
The path of the Wilson loop as in Figure 2 (top left), a one-loop Feynman diagram (top right) and
two-loop Feynman diagrams (bottom). The results of those integrals are written on the perimeter.

In Figure 3 you see the small-λ calculation summarized in porcelain inlaid with cobalt-blue, chrome-green
and black slips and decorated with real gold luster lines. The squiggly lines represent gluons, the charge
carriers of the strong interactions (analogs of photos, the quanta of light) which get exchanged between the
legs of the angled Wilson loop.

Figure 4: Cusp-30 top view, porcelain, oxblood glaze and gold luster. 12 × 10 × 3cm.

Thesefigures, known as Feynmandiagrams, represent particular integrals via the “Feynman rules”. Evaluating
the integrals, as always, can be an easy or a hard endeavor. We evaluated all the integrals contributing up to
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O(λ2) and the results of the integrals are summarized around the pot.
Figure 4 shows a top view of another pot. The design is such that the cross-section matches the curves

in Figure 2 (and top left image in Figure 3), where the angle between the two slabs from which the pot is
made represents the angle φ in the calculation.

In Figure 5 we see the detail from another pot, where the result of the Feynman diagram integral
proportional to λ in the Taylor expansion is presented. The number 7.70 is calculated by plugging in
φ ∼ 2.13 and θ = 0. This value of φ is the angle that I measured on this pot (and θ = 0 is the more physically
interesting case).

Figure 5: Cusp-1 detail, incised stoneware, red iron oxide and celadon glaze. 28 × 23 × 7cm.
The result of the one-loop Feynman diagram calculation.

Another motivation for the shape of the pots is that I dedicate each side to one approach to the problem, the
second side represents the string theory calculation, see Figure 6.

Figure 6: Cusp-29 AdS side, porcelain, oxblood glaze and gold luster. 28 × 30 × 9cm.
The color pattern is the random result of partial oxidation in the kiln.
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Figure 7: Cusp-16 detail, incised stoneware with shino glaze.
29 × 26 × 7cm.

The calculation of the minimal surface end-
ing on an angle at the boundary of AdS
space was originally done in my very first
paper on string theory during my PhD [7].
In [5] we generalize that result.

In Figure 7 to the right (and also the
top of Figure 6) is a graphical representa-
tion of the minimal surface. Here I tried to
represent the Poincaré patch of AdS space,
or the upper half space model of hyperbolic
space. Since the angle is in the plane R2,
once we add the extra direction we need to
consider only AdS3 (or H3), which is not
five dimensional, but still three dimensions
are hard to draw. And since I already used
up my three dimensions to make the pots
with the cross-section based on the angles,
I now had to resort to drawing in perspec-
tive.

In this figure the boundary of AdS
space is at the bottom, where you see an
angle. The arch extending above it is the
string. The formulas describing this em-
bedding are given in parametric form by
elliptic integrals. Those are generalizations
of (inverse) trigonometric functions, which
my collaborator V. Forini and I had the du-
bious pleasure of studying (see e.g. [1]).

After finding the solution for the shape
of the string, one can evaluate its area,
which diverges, since the distance to the
boundary of hyperbolic space is infinite. But there is a way of removing this infinity to get a finite quantity
(known as “renormalization”). The formula for the area is as also written on Cusp-1, see Figure 8.

Figure 8: Cusp-1 detail, incised stoneware, red iron oxide and celadon glaze. 28 × 23 × 7cm.
The result of the cassical string calculation.

Here K and E are complete elliptic integrals of the first and second kind. k is their modulus and there are
equations relating k, b and p to the angles φ and θ, which are found elsewhere on the pot.

There is one more useful conformal transformation, which instead of mapping R4 to itself, maps it to
S3 × R. Starting with polar coordinates, we express the radius as r = eτ . Now the two rays emanating from
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the origin are mapped to two lines along τ at fixed points on S3 (separated by an angle φ), so the “generalized
quark-antiquark potential” corresponds to a pair of static particles on the sphere. When we go to the string
picture, we fill the sphere to a ball with the hyperbolic metric. You can see in the middle right of Figure 9
my attempts to draw the surface ending along two lines on the cylinder.

Figure 9: Cusp-2, incised stoneware, red iron oxide, shino and glue glazes. 34 × 21 × 6cm.

In our paper we also calculate the first correction to the classical string which arises from its fluctuations.
This requires evaluating determinants of differential operators, the Lamé equation and some more advanced
math. I outline that calculations on some of the pots, for example the bottom of Cusp-29 in Figure 6.
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Summary and Conclusions

I have tried to explain here my research on the generalized quark-antiquark potential in N = 4 SYM and my
practice of realizing my research in ceramics. The paper these pots are based on led to a pair of works that
used tools of integrable systems to completely reformulate the problem of the quark-antiquark potential [4, 3]
and some results at all values of λ, but that will be the topic of a different series of ceramic vessels.

The experience of inscribing my calculations on ceramics has been exhilarating. I noticed that many
people, who would otherwise find mathematics intimidating and formulas repelling, were instead attracted
to it. Viewed as hieroglyphs or cuneiforms, the observer is apparently not confronted with their lack of
understanding, but is drawn to it as a foreign mysterious writing system. It also allows me to reexamine my
scientific research and find ways of representing it in 3d forms with 2d decorations. My collaborators and
colleagues have been intrigued and amused by this way of expressing scientific research and it opened for me
doors to museums and galleries, which would otherwise not be so welcoming to a traditional potter.
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Figure 10: Cusp-20 detail, impressed
stoneware with celadon
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base of this pot.
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