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Abstract

For any positive irrational number ω, the arithmetic ω flower is Fω = {n(cos 2πωn, sin 2πωn)| n ≥ 0, n ∈ Z}.
When ω = φ, the golden mean, and the scaling factor n is replaced with

√
n, it is well-known that the seed

arrangement in an ideal sunflower is modeled by the points in Fφ—and that the seeds appear to sort themselves into a

family of fn radially symmetric spirals, where fn is the nth Fibonaccinumber, for any n ≥ 1. A similar phenomenon

occurs for ω in general; and we outline how to construct Fω of multiple coronas consisting of successively larger

numbers of petals qj corresponding to fractions
pj

qj
that are good approximations to ω, as integer j increases. Lastly,

given a flower Fω where ω is unknown, we reverse engineer the process and recover the good approximations for ω

that are implicitly evident within the flower.

The flower bouquet of Figure 1 represents the irrational numbers e, φ, and π in some order, where φ is the

golden mean φ = 1+
√

5
2 and e is the natural number. Which flower is which? The number of petals in the

successive corona layers for each flower are clues. The answer appears at the end of Example 3.

a. b. c.

Figure 1 : Which flower is which: Fφ, Fπ, Fe?

In this paper, given any positive irrational number ω we outline a way to a construct a flower, denoted

Fω, that characterizes ω. We then show how, given the graphical flower of an unknown ω, we can reverse

engineer the process and thereby approximate the value of ω.

Toward a stylized flower model

Not long ago a book cover design editor asked if I had a cover art idea for my forthcoming book on continued

fractions [8]. How about a stylized flower? I suggested.

As we will see, a flower of layered coronas is the very embodiment of a continued fraction algorithm.

For a given positive irrational number ω, a continued fraction algorithm generates fractions Cn = pn

qn
, called

convergents, that approximate ω, where pn and qn are relatively prime positive integers, n is a nonnegative

integer, qn increases as n increases, and pn is the integer nearest qnω, denoted pn = [qnω]. If you understand

the construction of the flowers of Figure 1, I claim that you understand continued fractions.
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r = cos 3q r = cos 2q

r = cos 5q r = cos 4q

a. A book cover. b. A few polar flowers.
Figure 2 : Flowers, flowers everywhere.

In due course, I sent the editor the flower design of Figure 2.a which was then positioned to run off the

cover for added artistic effect. Where is the mathematics in such flowers? The answer is two-fold: (i) The

number q of petals in any corona of Fω is the denominator of a fraction well-approximating ω, and (ii) Given

a wheel freely rotating in place at ω revolutions per second and whose radius increases uniformly in time,

tracking a tack P on the wheel’s rim at unit second increments allows us to perceive the collection of P ’s

positions as a family of q spirals. We formalize (i) in Theorem 1 and (ii) in Theorem 4.

To begin, here is one way to construct a flower of n petals, a corona, for any given positive integer

n ≥ 1. When n = 1, a single circular disk might be best, such as exemplified in a bellcap mushroom.

When n ≥ 2, a simple approach is to use rotational symmetry and construct a wagon wheel skeletal template

of n uniformly spaced spokes—a stick-like figure. To embody this skeleton with petals, we could simply

use the polar flowers r = cosnθ, as illustrated in Figure 2.b. But such an arrangement generates spindly-

shaped coronas. Besides that flaw, the polar flower r = cos 2nθ has 4n petals, not 2n. A more luxurious

arrangement results if we use n somewhat overlapping copies, symmetrically arranged about a hub, of a

single petal from the polar flower r = cos mθ where m is less than n, a trick we used in generating the first

few corona layers in each of the flowers of Figure 1. As further embellishment we could give each petal

veins and serrated or multi-lobed edges as is done in Figure 6.b.

In sports we award medals for excellence. In somewhat the same way let us award bronze, silver, and

gold designations to those reduced fractions
p
q

that approximate ω in the following respective ways:
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∣

∣

<
1√
5q2

.

As a note of historical interest, in 1891, Adolf Hurwitz showed that for any real number ε, 0 < ε < 1, there

are some irrational numbers ω for which only a finite number of fractions p
q

exist for which |ω− p
q
| < ε√

5q2
;

a slick proof for this result appears in Ford [3, pp. 94–95]. So for all practical purposes, no platinum medals

will be awarded.

To continue with our flower construction, given ω, we seek an increasing sequence qn for which Cn =
pn

qn
(with pn = [qnω]) are at least silver medaling fractions. Then we layer successively larger circlets of qn

symmetrically-arranged petals about a given point, 1 ≤ n ≤ k, for some integer k. Finally—to aid in reverse

engineering the flower (an element I had neglected to include on the book cover of Figure 2.a)—we embed

a total of [ω] dots within the flower’s center, where the dots are disks if ω < [ω] and are stars if ω > [ω].

As a technical resource, an elegant way to generate only at least silver medaling fractions, and hence

our sequence qn, for ω is to use the optimal continued fraction introduced by Bosma [1]. The following
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theorem is a refinement of Bosma’s algorithm as given in [8, Chapter IX, Proposition 28], and is stated here

without proof. The notation tA ⊕ B, with A = a
b

and B = c
d

, means

tA ⊕ B =
ta + c

tb + d
,

where a, b, c, d are integers, and t is a real number. The solution to tA ⊕ B = ω is t = c−ωd
ωb−a . The symbols

C−2 = 0
1 and C−1 = 1

0 are called preconvergents; when n ≥ 0, Cn is called a convergent. Define sgn(t) as

the sign of t. Recall that dte is the ceiling of t.

Theorem 1: The optimal continued fraction for ω. For all integers n ≥ 0, let Cn−1 = a
b
, Cn−2 = c

d
,

t = c−ωd
ωb−a

, ε = sgn(t), and

δ =
d + εb(d|t|e + 1)

2d + εb(2d|t|e+ 1)
.

Then with m = d|t| − δe, Cn = p
q

is at least a silver medaling approximation for ω where

Cn = mCn−1 ⊕ εCn−2 =
ma + εc

mb + εd
,

m ≥ 2, p = ma + εc > 0, q = mb + εd > 0, pb − qa = ±1, and
p
q is in reduced form.

In Example 2, we use the Fibonacci numbers fn, the first few terms of which are given in Table 1. Note

that the third row of the table suggests that the sequence
fn+1

fn
converges to φ ≈ 1.61803, as indeed it does.

Table 1 : The Fibonacci numbers, fj+2 = fj+1 + fj , j ≥ 0.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

fj 0 1 1 2 3 5 8 13 21 34 55 89 144

fj+1/fj - 1 2 1.5 1.6667 1.6 1.625 1.6154 1.6190 1.6176 1.6182 1.6180 -

Example 2: Gold medaling approximations for φ via Theorem 1.

Step 0: The solution to tC−1 ⊕ C−2 = 1·t+0
t·0+1 = φ is t = φ. So ε = 1, δ = 1+0

2·1+0 = 1
2 , m = dφ − 1

2e = 2.

Thus C0 = 2C−1 ⊕ C−2 = 2
1 , which is a gold medaling approximation for φ.

Step 1: The solution to tC0 ⊕ C−1 = φ is t = 1−φ·0
φ·1−2 ≈ −2.618, so ε = −1. This time δ = 0+ε·1·4

2·0+ε·1·7 =
4
7 ≈ 0.57, and m = d|t| − 4

7e = 3, which means that C1 = 3C0 ⊕ εC−1 = 5
3 = f5

f4
. (As the reader

may show, for all integers k ≥ 2,
fk+1

fk
is a gold medaling fraction for φ when k is even and a silver

medaling fraction when k is odd.)

Step 2: The solution to tC1 ⊕ C0 = φ is t = 2−φ·1
φ·3−5 ≈ −2.618. This time δ = 11

19 ≈ 0.58, which means that

C2 = 3C1 ⊕ εC0 = 13
8 = f7

f6
.

Step 3 and more: Again the solution to tC2 ⊕ C1 = φ is t = 5−3φ
8φ−13 ≈ −2.618. This time δ = 29

60 which

means that C3 = 34
21 = f9

f8
. Similarly, C4 = f11

f10
= 89

55 , C5 = 233
144 , and in general Ck =

f2k+3

f2k+2
.

Example 3: The optimal continued fraction convergents for e and π. Applying Theorem 1 gives e’s first

few optimal convergents:

C0 =
3

1
, C1 =

8

3
, C2 =

19

7
, C3 =

87

32
, C4 =

193

71
, C5 =

1264

465
,

and π’s first few optimal convergents are

C0 =
3

1
, C1 =

22

7
, C2 =

355

113
, C3 =

104348

33215
. (1)
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With respect to the sequences Sω used to generate Fω, from Examples 2 and 3 we have

Sφ = {1, 3, 8, 21, 55}, Se = {1, 3, 7, 32, 71}, and Sπ = {1, 7, 113}.

Thus Figure 1.a is Fπ, Figure 1.b is Fe, and Figure 1.c is Fφ.

Why the flower analogy is so good

To see a deeper reason why these stylized flowers characterize continued fractions so well, imagine the

unit circle centered at the origin O is rotating counterclockwise uniformly at ω revolutions per second.

Refer to integer n as index n in seconds. Fix a point P on the circumference so that P at index n is at

P (n) = (cos 2πωn, sin 2πωn). At what indices n will P be near its initial position P (0) = (1, 0)? Observe

that P (q) ≈ P (0) if and only if qω is near an integer number p of revolutions if and only if p = [qω] if and

only if
p
q is a good candidate for possibly being a medal-winning approximation for ω.

0

1

2

3

4

5

6

7

8
9

10

x

y

113

O

(1, 0)

a. P (n), 0 ≤ n ≤ 10. b. Fπ, 0 ≤ n ≤ 120.
Figure 3 : Points along the unit circle and an arithmetic flower.

For example, let ω = π. At any moment, P is π − 3 ≈ 0.14 rotations counterclockwise from where it

had been one second ago—approximately 2π · (0.14) ≈ 0.89 radians ≈ 50.97◦. At index q = 1 second, then

p = 3, and P (1) ≈ (0.63, 0.78); that is, the fraction 3
1 is trying to approximate π, but not very successfully.

At index q = 7, then p = 22; this time P (7) ≈ (0.9985, −0.0556). And indeed, 22
7 is a gold medalist for π.

We could continue using this method of graphically finding indices q where P (q) ≈ (1, 0), a flower model

used in [4], but plotting P (n) for all indices n soon leaves the unit circle cluttered with points atop of points,

as is beginning to occur in Figure 3.a. However, at the cost of scaling points away from the positive x-axis

(including the points that would otherwise have been near (1, 0)), we could scale P (n) away from O by a

factor of n, resulting in what we call the arithmetic flower Fω,

Fω = {n(cos 2πωn, sin 2πωn)| n is a nonnegative integer}.

Plotting points in an arithmetic flower soon leads to the discovery that its points seem to arrange them-

selves into a family of spirals. For example, Figure 3.b shows that the first 120 points of Fπ appear to form a

family of 7 spirals. Aha! Is it only a coincidence that 7 is the denominator of the optimal continued fraction

convergent C1 = 22
7 from (1)? No; instead this pattern persists, and can be interpreted as a geometric con-

tinued fraction algorithm as shown in [8, Chapter 8]. For example, in Figure 3.b, locate the first spiral that

appears to cross the positive x-axis as it emanates from O; this spiral appears to cross near the point with

index n = 113, which means that the corresponding point on the unscaled unit circle should be very near
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(0, 1). Indeed, the next convergent from (1) is C2 = 355
113 . Furthermore, if we plot about 10000 points of Fπ

we see that they have arranged themselves as a family of 113 spirals in Figure 5.b. The same phenomenon

occurs with respect to the golden mean flower Fφ. In Figure 4.a, the points whose indices are Fibonacci

numbers all lie near the positive x-axis—such points correspond to points on the unit circle near (1, 0) of

Figure 3.a. Furthermore, in Figure 4.b, spiral 1 (of eight spirals) is the first spiral to cross the positive x-axis,

doing so near the points with indices f7 = 13 and f8 = 21; and from Example 2, C3 = 34
21 . Similarly, in

Figure 4.c, Fφ appears as a family of f7 = 13 spirals and spiral 12 is the first spiral to cross the positive

x-axis, doing so near the points with indices 21 and 34, which again corresponds to C3. The mathemat-

ical/biological literature abounds with articles describing the phenomenon of leaf and seed arrangements

being that of a Fibonacci number of spirals. For example, see [4] and [5] which model the seed arrangement

in the sunflower using a scaling factor of
√

n so that
√

n(cos 2πφn, sin 2πφn) represents the position of

seed n in a sunflower—because as seeds form at the center O of the sunflower, they push the older seeds

outward on the order of distance
√

n from O. We use the scaling factor n in Fω rather than
√

n so that index

n and distance of P (n) from O conveniently coincide for points in Fω near the positive x-axis.
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89

a. Fφ, 0 ≤ n ≤ 100. b. A family of 8 spirals. c. A family of 13 spirals.
Figure 4 : Fφ as a collection of points and spiral families.

Ideal spirals in the arithmetic flower

In this section we define what we mean by an apparent spiral within the arithmetic flower Fω. As shown in

[7] and [8] and as exemplified with the specific index q = 8 for Fφ in Figure 4.b, we can imagine Fω to be a

family of q continuous ideal spirals, denoted Lr(t), where t is a nonnegative real parameter, r is an integer

with 0 ≤ r < q, the period of each Lr is T = 1
ω−p

q

, p = [qω] with p and q being relatively prime. We allow

periods to be negative numbers. In particular, L0(t) contains the points of Fω whose indices are nonnegative

multiples of q. For each j, 1 ≤ j < q, there is a unique r, 1 ≤ r < q, where the graph of Lr(t) contains the

points of Fω whose indices are qk + j, where k is any nonnegative integer. With p = [ωq], p and q relatively

prime, and Q = 1
qω−p , namely, the period T = 1

ω−p

q

divided by q,

Lr(t) = t

(

cos 2π(ω − p

q
)(t + rQ), sin 2π(ω − p

q
)(t + rQ)

)

. (2)

For example, in Figure 4.b, ω = φ, q = 8, p = 13, T = 1
φ− 13

8

≈ −143.55, and Q = T
8 ≈ −17.94.

In that figure, each spiral Lr is labeled with its subscript r. L0(t)’s graph contains the points of Fφ with

indices, 0, 8, 16, 24, and so on, while the graph of L1(t) contains points with indices, 5, 13, 21, 29 and so

on; that is, when r = 1, then j = 5. The next theorem shows how j and r are related in general.
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a. Fφ as 7 spirals. b. Fπ, 0 ≤ n ≤ 10000. c. Gπ , 0 ≤ n ≤ 10000.
Figure 5 : A gallery of abstract flowers.

Theorem 4: A family of ideal spirals. Let ω be a positive irrational number and q be a positive integer

relatively prime to p = [qω]. The family of curves Lr(t), 0 ≤ r < q, from (2) are disjoint arithmetic spirals

for t > 0 and every point on Fω belongs to Lr(m) for some nonnegative integers m and r.

Proof. Let A and B be nonnegative numbers. The graph of parametric equations f(t) = t(cos A, sinA)

for t ≥ 0 is a ray from the origin O through the point (cosA, sinA). Let g(t) =

[

cosBt − sinBt

sinBt cosBt

]

, a

rotation matrix. Recall the identities cos(α +β) = cosα cosβ − sin α sinβ and sin(α +β) = sin α cos β +
sin β cos α. Thus the graph of

g(t)f(t) =

[

cos Bt − sinBt

sinBt cos Bt

]

· f(t) = t

(

cos(tB + A), sin(tB + A)

)

, (3)

is an arithmetic spiral. Let A = 2π
q

. The family of curves fr(t) = t(cos rA, sin rA), 0 ≤ r < q, for t > 0
forms a wagon wheel of q radially symmetric straight-ray spokes about O. By (3), the family of the q curves

t(cos(tB + rA), sin(tB + rA)) is a family of disjoint arithmetic spirals for t > 0 by continuity of the fr’s,

because the q points from the straight-ray spokes at radial distance t from O are all distinct, and rotating them

about the origin by tB preserves distinctness of points. With A = 2π(ω − p
q )Q and B = 2π(ω − p

q ), then

Lr(t) = g(t)fr(t) are disjoint arithmetic spirals for t > 0, where 0 ≤ r < q, 0 ≤ j < q, and m = qk + j

for all integers k ≥ 0. Let r ≡ pj mod q. To finish the proof we show that

m(cos 2πωm, sin 2πωm) = m

(

cos 2π(ω − p

q
)(m + rQ), sin 2π(ω − p

q
)(m + rQ)

)

.

For the first component of this identity we have

cos(2π(ω − p
q
)(m + rQ)) = cos(2π(ω − p

q
)(qk + j + rQ))

= cos(2πω(qk + j) + 2π(−p
q )(qk + j) + 2π

(ω−p

q
)r

(ω−p

q
)q

)

= cos(2πωm− 2πpk − 2πpj
q

+ 2πr
q

)

= cos(2πωm + 2π(r−pj)
q

) = cos(2πωm).

Since the similar result occurs when replacing cosine with sine, we are done.

Because of the peculiar nature of the jumbling of the r’s for the q spirals in the above proof, we consider

the dynamics as shown in Table 2 for a particular q and ω, namely, q = 8 and ω = φ, so that p = 13. For
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Table 2 : The dynamics of r versus p and j, r ≡ pj mod q with q = 8 and p = 13.

j 0 1 2 3 4 5 6 7

r ≡ pj mod q 0 5 2 7 4 1 6 3

example, when j = 1, the spiral whose points from Fφ have indices 1, 9, 17, . . . , corresponds with spiral

L5(t), and so on.

As an example illustrating a family of spirals for Fφ when p
q

fails to be a medal-winning fraction for

φ, let q = 7 whereupon p = [7φ] = 11 and |φ − 11
7 | ≈ 0.047 > 0.0102 ≈ 1

2·72 . As shown in Figure 5.a,

the period of each ideal spiral is about 21.46, which means that any single rotation of ideal spiral 0 about O

contains only 3 or 4 points of Fφ whereas when
p
q = 13

8 , as in Figure 4.b, each single rotation of a spiral

about O contains about 18 points.

Whenever p
q

is a medal-winning fraction for ω, then |ω − p
q
| is near 0. Thus the period T = 1

ω−p

q

of

each of the q ideal spirals will be a fairly large number. This large number divided by q gives the relatively

large (compared to q) approximate number of Fω’s points on any single rotation of any spiral—which is

why the human eye can perceive the apparent families of spirals in, say, Figure 4.a, for various integers q
corresponding to medal-winning fractions p

q
to ω.

To focus on another apparent aspect, note that the appearance of Fω changes qualitatively as index n

increases. For example, Fπ appears as a family of 7 spirals, 0 ≤ n ≤ 100, as shown in Figure 3.b. However

as n increases, the once pronounced appearance of 7 spirals fades, and is replaced with, in the case of Figure

5.b where 0 ≤ n ≤ 10000, the appearance of a family of 113 spirals. In order to view this progression

of different families of spirals within a single flower, we proceed as in [6] and warp space by replacing the

scaling factor n in Fω with ln n. Thus we say that the logarithmic spiral, denoted Gω, is the set of points

Gω = {lnn(cos 2πωn, sin2πωn)| n is a positive integer}.

In Figure 5.c, Gπ clearly displays the transition from a family of 7 spirals to that of 113 spirals. Figure 6.a

shows successive annuli of families of spirals as index n increases for Gφ—a collage formed by clipping the

various families of spirals in their indices of dominance. Replacing each family of these short arcs with a

corona layer of petals results in a more artfully rendered flower of Figure 1.c, namely Fφ.

a. Logarithmic spiral layers for Gφ. b. An unknown flower: Fx.
Figure 6 : A logarithmic skeleton and an unknown real number x.
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Reverse engineering a flower

Given a flower Fx as in Figure 6.b, where x is unknown, we wish to find a good approximation to x. Counting

the petals in the successive layers of the flower, we can find Sx, the sequence of petal numbers. Can you

guess the medal-winning fractions that are implicitly evident in the flower of Figure 6.b?

Step 0: We see that Sx = {1, 2, 7, 26, 123}. Since the center of the flower has but a single circular dot, we

know that 1
2 < x < 1. So C0 = 1.

Step 1: We know that C1 = w
2 for some integer w, 0 ≤ w ≤ 1, and that w and 2 are relatively prime. So

w = 1 and C1 = 1
2 .

Step 2: We know that C2 =
|z|
7 and that 7y + 2z = 1 for some integers y and z. By Euclid’s algorithm

for determining the greatest common divisor of two positive integers, one solution to this Diophantine

equation is y0 = 1 and z0 = −3, and thus from elementary number theory (see [2, pp. 11–12]) any

solution to the Diophantine equation is y = y0 + 2k = 1 + 2k and z = z0 − 7k = −3 − 7k for any

integer k. When k = 0, then
|y|
2 = 1

2 and
|z|
7 = 3

7 . The only other possible solution is when k = −1,

which gives
|y|
2 = 1

2 and
|z|
7 = 4

7 . So C2 is either 3
7 or 4

7 . Since | 37 − 1
2 | = | 47 − 1

2 | and x > 1
2 , then

C2 = 4
7 ≈ 0.5714.

Step 3: We know that C3 =
|s|
26 and that 26r + 7s = 1 for some integers r and s. By Euclid’s algorithm we

know that one solution is r0 = 3 and s0 = −11, so r = 3 + 7k and s = −11− 26k is a solution to the

Diophantine equation for all integers k. We know that |r| = 4 which corresponds with k = −1, which

means that s = 15, and so C3 = 15
26 ≈ 0.576923.

Step 4: Similarly, we can reason that C4 = 71
123 ≈ 0.577236. You might now recognize that these conver-

gents are near Euler’s gamma γ ≈ 0.577216, and thus we might view Figure 6.b as Fγ .

Using the above approach we can similarly reverse engineer Fω for any ω.
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