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Abstract  

Human-scale walkable structures have been designed, based on fractal curves, spirals, and knots. Traversing such 
structures in one’s imagination is entertaining and can provide a deeper understanding of mathematical objects. If 
some of these structures were built, for example in a public park, they would help people to better understand and 
appreciate mathematics. They could also find application in video games. Small models of several of them have 
been 3D printed.  

 
Introduction 

Several of M.C. Escher’s most popular prints feature a traversable closed path of some sort, including 
Ascending and Descending (1960), Waterfall (1961), and Reptiles (1943). Others depict a scene with 
multiple staircases arranged in unusual fashion, such as Relativity (1953), Convex and Concave (1953), 
and House of Stairs (1951) [1]. These generally involve optical illusions or unusual perspective systems, 
and the viewer can’t help imagining what it would be like to explore such a world.  

This paper describes human-scale walkable structures based on fractal curves, spirals, and knots. 
These constructs bear some similarity to 3D-printed knight’s tours by Robert Bosch [2]. In Bob’s words, 
these sorts of structures can “pull the viewer into the artwork and lead them to make discoveries or to see 
something in a new light”. They speak to our urge to explore new, sometimes enigmatic, and intriguing 
spaces.    

Some real-world architectural structures are resonant of the imagined constructs described below. 
Stepwells are wells in which the water is reached by descending a series of steps. The finest examples are 
located in India [3], and some are strongly reminescent of Escher’s prints involving multiple flights of 
stairs. One wonders if Escher was aware of these, as the columns and cupolas seen in buildings like that 
of Fig. 1a are also similar to features in some of Escher’s prints. A contemporary structure that consists 
almost entirely of stairs and landings is under construction in New York City. “Vessel”, with 154 flights 
of stairs, “is intended to be climbed, explored, and experienced” [4]. There is a rollercoaster-like structure 
in Germany that can be only be traversed via stairs [5]. 

 

 
Figure 1: a) A centuries-old stepwell, Toor ji ka baori, in Jodhpur, India (photograph by SaraswaT 

VaruN). b) Vessel, a structure consisting of stairs and platforms, under construction in New York 
(photograph by Mike Peel; www.mikepeel.net). 
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Fractal Curves 
Fractal curves provide convenient templates for walkable mathematical structures. The Hilbert curve is 
particularly easy to work with due to the face that it’s based on a square grid. It’s basically an algorithm 
for connecting the squares in a grid to form a non-intersecting path. This is illustrated in Figure 2a. The 
curve is covered with smaller squares in Fig. 2b that define a path equal in width to the spacing between 
the rows of squares. If each of these squares is imagined to be a stepping stone, a walkable “tower” can be 
constructed (Figs. 2c, 2d). The bilaterally-symmetric stepped form of this structure calls to mind Art Deco 
skyscrapers like the Empire State Building and Chrysler Building.  

The Gosper curve is a plane-filling curve that provides an algorithm for connecting a tiling of 
hexagons (Fig. 3a). It can be covered with hexagons in a similar manner to that used for the Hilbert curve 
with squares. This results in a chain of hexagons, a polyhex, with gaps that are long chains of hexagons, 
as shown in Fig. 3b. If the hexagons are treated as stepping stones, the tower-like structure of Figs. 3c and 
3d results. This structure looks much less architectural, due both to the lack of bilateral symmetry and the 
lack of right angles. If anything, it evokes natural basalt columns such as in the Giant’s Causeway.  

A third example is based on a path I discovered a few years ago that connects the squares comprising 
a Sierpinski Carpet [6], shown in Fig. 4a. The large open square in the center of this curve brought 
stepwells to mind. Making each square in Fig. 3a a square step results in the structure of Fig. 4b. These 
sorts of broad square steps don’t evoke actual stepwells very strongly, so I decided to add small flights of 
stairs between the large squares, which become landings (Fig. 4c, d).   

 

 

Figure 2: a) A third-order Hilbert curve. b) A Hilbert curve made of squares that are ½ the square grid 
spacing. c) Rendering of a structure created by stepping up each square to the midpoint of the curve and 

then back down. d) A 3D print of the structure shown in c.  
 

Fathauer

14



 

 
 

 
Figure 3: a) A first-order Gosper curve. b) A second-order Gosper curve made of hexagons. c, d) 

Renderings of a structure created by stepping up each hexagon to the midpoint of the curve  
and then back down.  

 

 
Figure 4: a) A path that delineates a second-order Sierpinski Carpet. b) A step well created by making 
the squares of a into square steps. c, d) Renderings of a step well based on b, but with small staircases 

added between the large square cuboids.  
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Spirals 

Another way to connect tessellated squares is with a spiral, as shown in Fig. 5a. In addition to single 
spirals, double and quadruple spirals are possible. Towers created by forming steps from the individual 
squares are shown in Figs. 5b and 5c. The steps could obviously be replaced by smooth ramps or varied in 
other manners, as well as the slope of the ramps being varied. It’s not hard to imagine a modern 
skyscraper based on such a form. Similar spirals based on hexagons and triangles are also possible. These 
can be seen as polygonal analogs of an Archimedean spiral, a circular spiral with even spacing between 
adjacent turnings.  

 

 
Figure 5: a) Single, double, and quadruple square spirals. b) A tower created by making the squares of a 

double spiral into square steps. c) A tower created by making the squares of a quadruple spiral into 
square steps.  

 

 
Figure 6: Two views of two connected square double spirals, forming a single path from one corner to 

the opposite corner.  
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A variation on this sort of form is a double-ended spiral, two finite spirals joined smoothly at the 
ends. There are also different ways to employ spirals in 3D structures. E.g., a tower made from a double 
spiral could rise continuously along its path rather than rising to a peak at the center and then returning to 
ground level. In Fig. 6, this is employed in a double-ended square double spiral. In each half, starting at 
ground level the ramp rises to a middle height at the center and continues to rise as the spiral progresses 
back outward. If a person were walking up this ramp, he or she would pass through a narrow deep 
channel to a relatively level center and then on along a tall narrow ridge.  

Spiral helices similar to those in Figure 54 have been used in actual buildings. The Tower of Gor, in 
modern-day Iran, is based on a square spiral. A 19th-century drawing is shown in Fig. 7a; the building is 
now a ruin. The minaret of the Great Mosque of Samarra, Fig. 7b, in modern-day Iraq, is a ninth-century 
structure based on a cicular spiral.  

Note that the vertical spacing between successive wrappings of the spiral are relatively uniform in 
Fig. 7b. As seen in Fig. 5, with uniform ramp/staircase slope the spacing decreases as the peak is 
approached. This is due to the fact that the amount of material needed to complete a full 360° gets smaller 
as the peak (center) is approached. Clay offers a convenient medium to create a similar structure to the 
minaret of Fig. 7b. An elongated right triangle of clay with uniform thickness was rolled to form the 
spiral helix of Fig. 7c, where the hypotenuse of the triangle provided the constant slope. As in Fig. 5, the 
spacing of the wrappings is seen to decrease as the peak is approached. In order to achieve more uniform 
spacing, the slope of the ramp must increase as the peak is approached. This can be observed on close 
examination of Fig. 7b. 

 

 
Figure 7: Spiral helical structures. a) The Tower of Gor; b) The minaret of the Great Mosque of Samarra 

(photograph by Vlastni Photo); c) A clay form with a ramp of constant slope. 
 

Links and Knots 
The crossings in links and knots create challenges and opportunities for more complex and interesting 
walkable designs. The Borromean rings are commonly shown in two dimensions as three flat interlocking 
circular rings. It’s well known that this structure isn’t possible as drawn, with distortion from perfect 
circles being required in a 3D object. In a walkable structure, bridges allowing one ring to cross over 
another naturally provide the sort of distortion needed, as shown in Fig. 8. A 3D file that can be 
manipulated is available, and this design has been 3D printed [7]. The designs in Figures 9 and 10 have 
also been printed. 
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Figure 8: Three-dimensional model of walkable Borromean rings. 

 
The five-crossing knot designated 51, with five-fold symmetry, is a relatively simple starting point 

for designing a walkable knot. Since it’s an alternating knot, five pairs of up and down flights of stairs 
suffice to create the five crossings. A pentagram inset in a regular pentagon was employed in the layout of 
Fig. 9 to emphasize the five-fold nature of the knot. Note this is the torus knot designated T(5,2) [8].  

In these designs step dimensions were chosen that are similar to those found in typical relatively 
narrow staircases; e.g., a step height of 8” (20 cm), depth of 12” (30 cm), and width of 2.5’ to 3.0’ (0.75 
m to 0.9 m). The slope of the flights of stairs is constant, as in real buildings, and the clearance for 
walking underneath bridges is adequate for a typical person.  

 

 
Figure 9: Three-dimensional model of a walkable five-crossing knot. 

 
Straightforward walkable designs based on alternating knots will always contain a single bridging 

level in addition to the ground level. Using torus knots with more crossings, which are not in general 
alternating, requires more levels. This creates potential for more dramatic designs, such as that shown in 
Fig. 10. In this case another five-fold knot, the (5,3) torus knot, which has ten crossings, was used. In 
contrast to Fig. 9, the structure of Fig. 10 has three levels. The design has a distinct Escher flavor to it. 
Unlike most of Escher’s prints, there are no optical illusions or other physical impossibilities here. As a 
result, such a structure could actually be built in a public space, affording an amusing form of exercise 
and social interaction. Smoothly-curved arches were added under the bridges in this design, in contrast to 
the designs of Figures 8 and 9. 
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Figure 10: Three-dimensional model of a walkable (5,3) torus knot. 

 
With a more complex knot like the (6,5) torus knot, with 18 crossings, it becomes more challenging 

to fit all the crossings in with bridges that allow adequate clearance. After some initial attempts with stairs 
and bridges, I chose to use a combination of spiral staircases and slides, as shown in Fig. 11. A spiral 
staircase allows a large elevation gain in a small footprint. Descending on slides would be more fun than 
walking stairs, and the slides allow for graceful smooth curves. If it were actually built, this would 
obviously be a much larger structure than the torus knot of Fig. 10. 

 

 
Figure 11: Three-dimensional model of a walk-up, slide-down (6,5) torus knot. 

 
In the last example, a nine-crossing knot is used that contains a square grid of alternating weave. 

This knot layout comes from an iterated knot I designed previously [9]. More architectural detail is added 
in this example, as seen in Fig. 12. The cupolas supported by pillars are consciously patterned after the 
sort of architectural details Escher used in prints like Belvedere. Since the crossings are laid out as a 
square weave, they could obviously be extended to an arbitrarily large structure.  
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Figure 12: Three-dimensional model of a walkable nine-crossing knot. 

 
 

Summary and Conclusions 
Imagined human-scale walkable structures have been designed based on fractal curves, spirals, and 

knots. The types of structures include towers, stepwells, walking/exercise paths, and slides. It’s 
entertaining to traverse these mentally, and doing so can provide a deeper understanding of mathematical 
objects. Real-world structures based on these some of these designs could actually be built, and they 
could also find application in video games or marble runs. One direction for extending this work would be 
designs with more three-dimensional character, such as a Hilbert curve in three dimensions or polyhedra-
based structures. Another would be more topologically-interesting forms such as a Klein bottle. Walkable 
impossible objects are another possibility. It should also be possible to create a standard set of design 
rules that would allow automatic generation of a walkable structure from input of any known knot.   
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