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Abstract
We present a method of creating origami tessellations in the style of Ron Resch’s Linear Flower. We designed a
process that allows us to construct a crease pattern modeled after any convex uniform tiling by calculating where
folds on that crease pattern should be placed to get a desired result when folded. This has allowed us to move beyond
Resch’s original square grid and apply it to any Archimedean and k-uniform tiling or their duals.

Introduction

Linear Flower is an origami tessellation by the late Ron Resch [2]. We created a reconstruction of the work
(Figure 1a) by estimating proportions from the artist’s photographed pieces. There are three basic structures
that comprise Linear Flower (Figure 1b): 1- simple units with a flat top, rectangular sides, and a leg sloping
away from each corner; 2- complex units with a flat top, triangular sides, and indented pockets at the corners
which overlap the simple unit’s legs; 3- rectangular regions not used by either type of unit, known in origami
terms as rivers [1]. We define a reference plane as the surface against which the rivers lie flat.

(a) (b) (c) (d)

Figure 1: The basic structures of Linear Flower

To generate a preliminary crease pattern (Figure 1c): 1- Start with a polygon and a duplicate of that polygon
that has been reduced by an amount h on each side, where h is the height of the folded complex unit. In
the case of Linear Flower, the polygon is a square and h = 0.5 assuming a unit length apothem. 2- Join the
midpoints of the reduced polygon to form the top surface of the complex unit. 3- Form the shared legs of
the simple and complex units with three lines at each vertex of the reduced polygon: the first connects to
the corresponding vertex of the starting polygon, and the other two perpendicularly intersect the sides of the
starting polygon. 4- Connect the midpoint polygon to the shared legs to form the walls of the complex unit.
This completes the complex unit. The full crease pattern is formed by tiling complex units and connecting
orthogonally adjacent units’ corresponding vertices (Figure 1d). The amount of space between complex units
determines the size of the simple units and the width of the rivers. In the case of Linear Flower, the spacing
is equal to the edge length of the midpoint polygon.
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Modifying Linear Flower

In the original Linear Flower, Resch’s design results in slightly sloped walls and gently splayed pockets.
However, when the same process is applied to other shapes, the splaying is often exacerbated, resulting in a
model that cannot lie flat against the reference plane when the creases are fully formed. To avoid this, we
wanted to fold an idealized version of Linear Flower where the sides of the units are perpendicular to the
reference plane and the legs are folded completely so the indented pockets are tetrahedral in shape (Figure
2a). Simply squeezing the Linear Flower to force this condition causes the legs of the units to buckle, since
the pockets are too shallow for the legs to remain straight when completely folded. To achieve this result
while avoiding unwanted deformation, we modify the crease pattern by holding all points of the preliminary
crease pattern fixed except for point B, the deepest vertex of the tetrahedral pocket (Figure 2b). Shifting point
B towards the center of the complex unit produces shallower pockets while shifting it away from the center
produces deeper pockets. The calculation for the shift in B is discussed later in this paper.

(a) (b) (c)

Figure 2: Modifying Linear Flower

Linear Flower can be further modified by changing the height of the complex unit. Assuming a unit length
apothem, h is theoretically bounded by 0, where the paper would remain flat, and 1, where the midpoint
polygon shrinks to a point. However, there are physical limits within that range. When h > 0.6702, the
pockets extend deeply enough into the unit that they collide with one another; when h < 0.4143, the pockets
dip below the reference plane (Figure 2c). These specific limits only apply to a square complex unit and are
found by solving for h when B is touching the reference plane or located at the center of the unit, respectively.

New Constructions

(a) (b) (c) (d)

Figure 3: Tessellations from regular tilings

Linear Flower uses squares to create complex units, but we can create new works of art in the same style by
applying the same construction methods to different shapes, such as hexagons or triangles. To do so, 1- start
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with a base tiling; 2- explode the tiles to form rivers; 3- construct complex units in the base tiles, incorporating
the shifting of point B; 4- connect the spaces between complex units, which forms the simple units (Figure
3d). The base tiling for Linear Flower is the square grid. Since the square grid is a self-dual tiling, both
complex units and simple units are square (Figure 3a). Tiling hexagonal complex units produces triangular
simple units and vice versa, since the shapes that form the simple units compose the dual tiling of the shapes
that form the complex units (Figure 3b and 3c). Furthermore, the heights of the simple and complex units
are the same only for square units. Complex units with acute interior angles will produce simple units at a
taller height, and those with obtuse interior angles will produce simple units at a lower height.

B Shift Calculation
In our mathematical model, we assume origami does not stretch the paper and all deformation is localized
to the folds which act as hinges. Therefore the distance between points on paper will be the same in the
folded model as in the flat crease pattern. We determine the shift in B by constraining the parameters of the
folded model to agree with that of the flat crease pattern. We start with a preliminary crease pattern for one
complex unit generated as shown in Figure 1c, substituting a different value for h and a different polygon as
desired. We examine one vertex (Figure 4a). Point C is the vertex of the starting polygon, point A is the
location where line BC would intersect the midpoint polygon if extended, and α is half the interior angle
of the vertex. ACflat remains constant regardless of how far B shifts. The gray lines show the location of
point B prior to shifting, which is the vertex of the reduced polygon. When the complex unit is folded, point
C is located directly above this vertex. Thus, we can calculate or measure AC ‖ , the parallel component of
ACfolded relative to the reference plane.

(a) (b) (c) (d)

Figure 4: Calculating the B shift

Now we examine a folded complex unit where point C may be level with, taller than, or lower than point A
(Figure 4b-4d). Point C is located at hC = h

tan(α) above the reference plane. Subtracting h gives us AC⊥,

the perpendicular component of ACfolded relative to the reference plane, thus ACfolded =

√
AC

2
‖ + AC

2
⊥. The

angle between points A and C is γ and can be calculated from AC⊥ and AC ‖ . Then θC = 90◦ − α − γ if C
is taller than A and θC = 180◦ − α − γ if A is taller than C. Using the Law of Sines and software with an
equation solver such as MATLAB, solving the following four equations simultaneously gives the modified
length of BC and point B can be shifted accordingly:

ACfolded · sin(θC) = AB · sin(θB) BC · sin(θC) = AB · sin(θA)
θA + θB + θC = 180◦ AB + BC = ACflat

This result must be calculated for each unique vertex of the complex unit.

Semiregular Tilings
We can design works that use more than one type of complex unit, so long as the base tilings are convex and
edge-to-edge. Archimedean and k-uniform tilings serve as good base tilings for such designs. An example is
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the snub trihexagonal tiling (Figure 5a and 5b) which uses both triangular and hexagonal complex units. The
heights of the complex units used are linked. Choosing the height for one determines the height of the simple
unit, which in turn determines the height for the other complex unit since both complex units contribute to
the formation of the simple unit. The spacing between units is such that the rivers remain rectangular. The
resulting simple unit shapes are that of the floret pentagonal tiling, dual to the snub trihexagonal tiling.

(a) (b) (c) (d)

Figure 5: Origami tessellations folded from Stardream paper (0.16 mm thick) and crease patterns from
semiregular tilings

Irregular polygons can also be tiled in this style if they meet the criterion that every vertex joins only one type
of angle (e.g. four 90◦ angles, three 120◦ angles, or eight 45◦ angles coming together). The reason for this
is that the height of the simple unit must be uniform for each of the complex units that make up the simple
unit. Catalan tilings (Archimedean duals) and k-uniform dual tilings satisfy this condition. Figures 5c and
5d show one such example with a tessellation created from a Cairo pentagonal tiling base.

Future Work

It is possible to create tessellations from irregular tilings even if they do not meet the vertex criterion described
above if we modify the method for generating the preliminary crease pattern. Instead of drawing the legs
to perpendicularly intersect the starting polygon (Figure 1c), we can draw them a fixed distance away from
the unit vertex. This distance is the height of the simple unit, and forcing all the legs to produce the same
height ensures that simple units will be able to form. However, this doesn’t always work when dissimilar
angles are joined at a vertex (e.g. very obtuse and very acute angles joining). Since obtuse angles lend
themselves to producing a shorter simple unit and acute angles lend themselves to producing a taller simpler
unit, forcing the simple unit height may prevent the tetrahedral pockets from forming properly. We plan to
develop methods that fine-tune the parameters to allow for the formation of tessellations from irregular tilings
such as rhombic Penrose tilings and Voronoi tessellations.

Acknowledgements
We thank Katrina S. Forest, Robby Kraft, Marcus Michelen, Max Shevertalov, Jennifer Tashman, and Ninh
Tran for useful discussions.

References
[1] R. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. 2nd ed. CRC Press,

2012, pp. 749.
[2] R. Resch. “Periodic Paper Folding or Tessellated Origami.”

http://www.ronresch.org/ronresch/gallery/extreme-paper/.

Nguyen and Fritzson

518

http://www.ronresch.org/ronresch/gallery/extreme-paper/

