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Abstract
We present a previously undiscovered threefold Möbius band which is the unique surface arising from the limit of a
sequence of tetrahedral rings, all connected with a minimal, uniformly distributed twist angle. The band is optimal
in the sense that its bending is minimized and its midline has the smallest possible total curvature for a closed curve
of given fixed nonzero torsion.

Figure 1: The classical sixfold kaleidocycle made from six tetrahedra (left) and the threefold Möbius band
(right) are related through a sequence of minimally twisted tetrahedral rings. The esthetically

pleasing appearance of the band is due to its uniformly distributed twist and its minimal bending.

Rings of Linked Polyhedra

Consider a chain of N identical polyhedra. Several intriguing question immediately arise: Under what
conditions is it possible to close the chain to form a ring? If so, in how many ways can it be done? If the
polyhedral volumes are not allowed to overlap, is it still possible to form a ring? If so, how many ways of
doing so remain?

We begin with a simple example. Consider a chain of regular tetrahedra with two opposing (orthogonal)
edges being the linking sites. If the volumes of the tetrahedra are allowed to overlap, then two such tetrahedra
can be linked trivially with their positions being exactly coincident. But there is no way to link three such
tetrahedra (Figure 2). Without overlapping volumes, the chain must have at least six regular tetrahedra to
form a closed ring. Also, the smallest odd number of tetrahedra needed to form a closed ring is seven, and
without volume overlap the smallest odd number of tetrahedra is eleven.
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Figure 2: Three tetrahedra cannot be
linked to form a ring even if

their volumes overlap.

Figure 3: Tetrahedra with hinges (cyan), midaxes (magenta),
and twist angles (yellow) indicated.

Left: Regular tetrahedron with orthogonal hinges.
Right: Tetrahedron with twist angle π/3.

Rings of Linked Twisted Tetrahedra

We next consider “twisted tetrahedra”, also called disphenoids, which are tetrahedra whose opposing edges
have the same length. As the linking siteswe again use two opposing edgeswhich are not generally orthogonal,
as illustrated in Figure 3. We refer to the angle between those edges as the twist angle 0 < α ≤ π/2. (The
singular trivial case α = 0, which corresponds to a chain of linked rectangular plates, is excluded from
consideration.) Granted that the volumes of the tetrahedra must not overlap (which we require from this point
onward), for what values of α is it possible to form a closed ring of N such identical twisted tetrahedra? For
N = 6 the answer has been known for a long time: It works with six untwisted (α = π/2) tetrahedra. The
resulting object is known as the sixfold kaleidocycle K6 (Figure 1, left). The fact that K6 — and indeed
all the rings we describe below — possess an internal degree of freedom in the sense of a mechanism is so
fascinating that we pursue it in a separate workshop contribution to this year’s Bridges conference.

For N > 6 it turns out that there are many possible twist angles α for which closed rings can be formed.
Therefore, we pose the following problem: For N twisted tetrahedra find the smallest possible α for which a
closed ring can be formed. It turns out that for each N > 6 there exists a critical twist angle αc , π/2 below
which one class of closed rings cannot be formed. The determination of the critical twist angle hinges on the
real solvability of a system of quadratic equations. We provide a few exemplary values in Table 1 and note
that αc as well as the total twist Nαc are strictly decreasing functions of N. Moreover, for N → ∞ it appears
that αc tends to zero while Nαc approaches a nonzero asymptotic value. As shown in Figure 4, the sequence
KN, N = 6, 7, 8, . . . , of kaleidocycles tends to a surface with the shape of a threefold Möbius band as N → ∞.
Note that for the limit object to have a finite size the length of the tetrahedral midaxes (magenta in Figure 3)
must also tend to zero. For a discrete equivalent of a band we define the two “sides” of a tetrahedron to be the
two pairs of triangular faces which make the larger solid angle along the edges which are not links. (The red
central stripes in Figure 4 connect the pairs of triangular faces which constitute one side of a tetrahedron.)

Table 1: Critical twist angle αc and total twist angle Nαc for a ring of N twisted tetrahedra.

N 6 7 8 9 10 11 12 15 21 33
αc/π 0.5 0.4046 0.3443 0.3010 0.2680 0.2418 0.2204 0.1746 0.1237 0.0783
Nαc/π 3 2.8319 2.7541 2.7091 2.6800 2.6598 2.6452 2.6189 2.5974 2.5847
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Figure 4: The limit process of linking an increasing number N of minimally twisted tetrahedra together to
form a kaleidocycle KN. Shown are K6 (top left), K9 (top right), K12 (middle left), K15 (middle
right), K21 (bottom left), and the limit surface S for N → ∞ (bottom right), a threefold Möbius

band. The linking edges (and the rulings in the limit) are shown in cyan.
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Figure 5: The limit surface S (left) and its midline curve C with indicated normal curvature (right).

The Limit Surface and Limit Curve

It is remarkable that the limit surface S shown in Figure 4 and 5 has the topology of a threefold Möbius band,
a band formed from a rectangle whose ends are “glued” together after three half turns, instead of the most
commonly depicted situation in which the ends are glued after one half turn. Related to this is a threefold
rotational symmetry which is clearly visible in Figure 4. By construction, it is clear that S is ruled — the
linking edges in the chain become the rulings in the smooth limit surface— but it is not a developable surface,
as its twist induces a Gaussian curvature that is everywhere negative. Our numerical results show that the
surface shape resulting from the described limit process is unique up to the width of the band which is set by
the extension of S along the rulings. Beyond a certain width the surface S will begin to self intersect in the
center. This is analogous to what occurs when attempting to close a chain of tetrahedra with linking edges
that are too long.

The unique closed midline C of S shown in Figure 5 is defined through the limit of the polygonal
chain given by the tetrahedral midaxes (Figure 3). Let γ(σ) be an arc length parametrization of C with arc
length σ ∈ [0 , 1]. The unit tangent t = γ′ (where a prime denotes the derivative with respect to arc length)
to C describes the local rotation axis of the rulings of S. By construction from the twisted tetrahedra it
follows that the torsion τ of C is uniform: τ = τ0. Our numerical investigations of C suggest that its normal
curvature κ is sinusoidal; more specifically, κ(σ) = κ0| sin(3πσ)|, with κ0 being constant. If C has length
`, we find that κ0 ≈ 13.022554/`, τ0 ≈ 8.094078/`, and the total torsion limN→∞ Nαc = τ0` ≈ 2.576425π.
Up to a scaling C is a unique space curve. Moreover, our calculations indicate that it has novel extremal
properties. The problem of determining greatest lower bounds for the total curvature K(Γ) =

∫
Γ
κ dσ and

the total absolute torsion T(Γ) =
∫
Γ
|τ| dσ of an arbitrary closed space curve Γ has a long history. See, for

example, Fenchel [1]. Although Weiner [2] has shown that a closed curve Γ of constant torsion can have
K(Γ) arbitrarily close to 2π, the construction underlying his proof is based on a degenerate limit in which
K(Γ)→ 2π and T(Γ)→ 0 simultaneously, the limit curve being circular. A question relevant to the midline
C of S concerns the value of K(Γ) for all curves Γ of nonzero constant torsion? In this regard, a potentially
interesting quantity is the ratio Ω(C) = K(C)/T(C) = 2κ0/πτ0 ≈ 1.02426. Assuming, without proof, that C
yields the greatest lower bound of K(Γ) for a given fixed nonzero torsion, we are led to conjecture that:

For every closed curve Γ, Ω(Γ) ≥ Ω(C).
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