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Abstract 
In the arts, qualitative usage of the center of attention (CA) has long been successfully employed by visual artists. 
For dance, a center of attention was defined by Kasia Williams in a paper at the 2012 Bridges conference as a 
means for mathematically studying how choreographers and dancers tend to create and manipulate the CA in dance 
works. It is quantitatively calculated by an interpreter of video frames assigning weights to the dancers based on 
the choreographer’s intent as applied to dancer configurations and locations on stage as the performance proceeds. 
Using Excel and Mathematica, the authors have been exploring methods of calculating and displaying the CA as a 
trajectory along with statistical and other quantifiers from analyses of a variety of dance performances. The hope 
is that the center of attention might emerge as a new useful tool in understanding, classifying, and improving 
audience enjoyment. Once quantified, there is the possibility that other dance parameters may also be calculated 
and provide a means for comparing dances. We will present our latest results and suggest ways how these ideas 
might be adopted beyond dance performances. These might include classroom activities and perhaps related 
attention-producing technologies dominated by configurations changing in space and time.  

 
Introduction 

At the 2012 Bridges conference Kasia Williams (née Wasilewska) presented a paper that included the 
proposal that dances might be analyzed in terms of a “center of attention mass,” capturing and quantifying 
information on the choreographer’s and audience’s focus during the dance performance. She suggested that 
dancers’ locations on stage in time and space be quantified, with numerical weights assigned to the dancers, 
noting that,  

“… We would assign the weights based on the type of movement performed and how likely the 
moves are to attract the audience’s attention. We might want to assign zero weight to the dancers 
that are off stage. A dancer leaping across the stage would carry more weight than a dancer frozen 
in a pose somewhere stage left. Or, depending on the atmosphere of the dance, a dancer crouching 
down and being still center stage left could have more weight than dancers moving around him.”[6] 

 The hope is that the center of attention (CA) might emerge as a new useful tool in understanding, 
classifying, and improving the choreographic process as well as dance audience enjoyment. This might 
parallel the use of similar concepts in the visual arts, for example the “rule of thirds” in photography, which 
essentially positions the CA at one intersection point of two equally spaced horizontal lines and two equally 
spaced vertical lines. It might help clarify often unstated or intuitive concepts used by choreographers and 
audiences in creating and responding to dance performances. In addition, once digitized various statistical 
properties of dances might be easily examined, such as how often certain types of movement appear, how 
closely linked pairs of dancers are in time or space, or the speed and directional characteristics of individuals 
or groups of dancers. 
 

Initial efforts by the authors has been a close examination of the center of attention  and related 
parameters in the dance “Apollonian Circles,” from the concert The Daughters of Hypatia by Karl Schaffer 
[4]. We have used Mathematica 11.1 and Excel 16.0 for most of our calculations and are planning the 
implementation of software which will be easily usable by choreographers and others for the examination 
of dance parameters as described above. Using these calculations, we have created animations which model 

Bridges 2018 Conference Proceedings

273



 
 

the dance and provide an ellipse centered at the CA with major axis determined during the calculations of 
fitting a regression line approximating the dancers’ positions. 
 

Calculation of the Center of Attention and Associated Ellipse 
“Apollonian Circles,” the brief 70 second dance we have initially used as a template for our development 
of the CA and other quantitative analyses, is a quartet from the dance concert The Daughters of Hypatia: 
Circles of Mathematical Women [3], which celebrates women mathematicians throughout history. The title 
refers to the mathematical concept attributed to Apollonius of Persia concerning two orthogonal families 
of circles. Hypatia is known to have written treatises on the works of Apollonius, and a circular sub-theme 
in the concert refers to circles of community and support that have nourished women in the field of 
mathematics. Figure 1 shows a screen shot from the dance next to a frame containing a circle for the position 
of each of the four dancers from the accompanying Mathematica animation. The open circle in the 
animation is the CA at that time and line segments connect each dancer’s circle to the CA. The ellipse has 
size and major axis determined by the weighted regression line through the four dancers’ positions. The 
ellipse might be thought of as describing the focus of attention, and perhaps might be useful at some point 
by the lighting designer. (The graphic in the background of the video screen shot is actually an Apollonian 
gasket, a family of mutually tangent circles in which the numbers show the curvatures of the circles.) 
 

   
Figure 1:  Frames from the dance “Apollonian Circles” and the accompanying Mathematica animation. 

 
 In order to construct the animation we sampled the dancers’ locations 21 times, approximately every 
3 seconds, and assigned weights 0, 1, or 2 to each dancer, with higher weights indicating that the 
choreographer meant for the dancer to take more of the audience’s attention. Locations were calibrated 
according to “stage units,” described below, in which the center stage point is assumed to have coordinates 
(0,0). Also, intermediate frames of the animation between the sampled points were determined by functions 
derived using Mathematica’s interpolation command. Linear interpolation has thus far been more successful 
than quadratic and cubic polynomials or splines, but is used here for illustration purposes only. In practice, 
functional forms other than linear would be considered. Additionally, observational judgments as to the 
desired effect of weights and rules to assure consistency of usage would need to be made. The CA at time 
t is defined as 𝑐 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 ), where (xi(t), yi(t)) and wi(t) are the location and weight respectively of 
the ith dancer at time t, where i takes on the values 1, 2, 3,… d, and d is the total number of dancers. Here 
𝑥 𝑡 	and	𝑦 𝑡  are the weighted means: 

 
 The orientation of an ellipse indicating spread around a center of attention point c(t) depends on the 
directions of major and minor axis lines that result from the line that is the best weighted fitting of its 
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associated data points. The standard linear regression approach assumes there is no randomness in the x 
coordinates and finds the line minimizing the standard deviation of the weighted vertical distances of the 
points from the line. However if there is uncertainty in both x and y coordinates, as is the case with the 
locations of dancers on stage, then a preferred but little used method called orthogonal or total least squares 
regression finds the line that minimizes the standard deviation of the weighted orthogonal distances of the 
points to the line, see Figure 2. This weighted orthogonal regression gives both the slope and intercept of 
an ellipse axis along with the standard deviation of points from it. The other axis is then a line perpendicular 
to it and both axes pass through the CA. (See supplementary Appendix file for equation details.) 
 

 
Figure 2: Standard linear regression (left) and orthogonal linear regression (right) minimize vertical and 

orthogonal distances of data points, respectively. 
 

 In reconciling standard weighted least squares and orthogonal regression, one finds the former giving 
a line through the data that depends on the coordinate system orientation. If the axes are iteratively re-
oriented from -90° to 90° for calculation of the standard linear regression there will be a best fit among all 
regressions when its x-axis is parallel to the best orthogonal regression fit line. Its summed weighted errors 
are the same as that of orthogonal regression and hence both methods agree. Details and derivations of 
orthogonal regression are clearly set out in a 2014 publication by Munoz et al [1], which aims to popularize 
and make the method accessible to undergraduate statistics and linear algebra students (see Appendix).  
 

Coordinates 
How we decide to set coordinates for the dance stage is important if we are to do quantitative 

comparisons between dances, choreographers, or dance forms. This is an example of the challenges that 
often occur when coordinating an art form with mathematics. Dancers and choreographers tend to use two 
somewhat inconsistent ways of naming coordinates for the typical proscenium stage. Names for stage areas 
tend to divide the stage into nine sections, with stage right referring to the dancer’s right as he or she faces 
the audience (Figure 3(a)), and upstage being furtherst from the audience.  

 

On the other hand, dancers often place small tape markers called “spikes”  at half or quarter points on 
the stage, easily glimpsed in the performers’ peripheral vision. The shapes are often as shown, either X- or 
T- or inverted T-shapes (Figure 3(b). Normally only a few of those shown here are used, as otherwise the 
stage becomes too cluttered with tape! Most common are the center center spike and the quarter and center 
inverted Ts at the downstage lip of the stage (the downstage spikes are easily noticed by dancers facing the 
audience without being apparent to the audience.) Sometimes glow tape is used, if the dancers will need to 
find their places in blackout. Also, if stage sets are used, then spikes indicating their locations will be added 
as necessary. Note that these points and lines essentially divide the stage into sixteen rather than nine areas. 
Sometimes these areas are referred to, for example, as “slightly up left of center.”  

 

A numerical coordinate version of these stage divisions would probably place the origin (0,0) at the 
center center spike, and divide the four quadrants of the stage in the usual manner of coordinatizing the 
plane. Most proscenium stages used for dance are wider than they are deep, and at least somewhat 
rectangular in shape. For this study we have placed the origin at center stage and quadrant one at upstage 
left, so that the traditional planar orientation is from the point of view of the audience. The stage area is set 
from –4 to 4 horizontally and from –2 to 2 vertically. 
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Figure 3: Three systems for designating locations on stage: (a) Stage areas. (b) Stage markers.  
(c) Coordinates used in this study. 

 
Movement analysis of Apollonian Circles 

Once we have collected the data points (x(t),y(t)) and associated weights w(t) for each dancer in a particular 
dance we can run the Mathematica animation model side by side with a video of the dance. If the animation 
and dance match closely then other movement analyses can easily be done using these same data points. 
For this preliminary study, and as a model for future work, we have done a number of analyses of the dance  
‘Apollonian Circles,” primarily using Excel spreadsheets. The side by side video and animation are at [4]. 
 

From times and coordinates for each of four dancers over an encompassing 18 frame subset used in 
this part of the analysis it is possible to calculate 17  or less sequential distances for each. These are 
measured in Euclidian stage units (SU) moved. Each such distance for a dancer is the square root of the 
sum of the squares of x coordinate differences and y coordinate differences. Associated with these inter-
frame movement distances are their directions θ(t), ranging between -180 and 180 degrees, referenced in 
calculations to the positive x-axis. There are also associated velocities v(t), each one calculated as (inter-
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frame distance moved)/(time interval between these adjacent frames). However, data is only from adjacent 
frames between which a dancer is moving. These fractions of the 17 inter-frame motions are indicated in 
the first row shown in Table 1. As an example, the 0.63 SU/sec for dancer 1 is the average of 0.59 × 17 = 
10 separate velocity calculations. There is seen to be little variation here among dancer average velocities. 
The average of the four tabulated values, namely 0.63, 0.80, 0.61 and 0.59, is 0.66 SU/sec. 
 

Table 1: Motion data analysis from Apollonian Circles 
 

 Dancer 1 Dancer 2 Dancer 3 Dancer 4 

Fraction of intervals moving 0.59 0.71 0.76 0.82 

Average velocity, SU/sec 0.63 0.80 0.61 0.59 

Coefficient of variation of velocity 0.60 0.72 0.42 0.48 

Standard deviation of θ, degrees 94 109 91 106 
 

It is interesting to identify to what extent lines of dancers appear, and what are their associated 
orientations. These can show contrast with other spatial distributions of dancers. Fitted ellipse quantifiers 
in frames having more than two dancers on stage were therefore examined. Results are: 

 

 Fraction of frames with all dancers in-line (minor axis = 0)  0.4 
 Remaining fraction of frames with ellipse describing CA  0.6 
 Average θe                         -11o 
 Standard deviation of θe                       41o 
 

Here θe is the angle of the ellipse major axis with respect to the positive x-axis. It is significant that 
within half of the in-line 0.4 fraction, i.e. 0.2, are found to have a line with a slope –1. This orientation is 
from upstage right towards downstage left. Choreographers often employ such a diagonal line of dancers 
as a strong element in a dance work. 
 

 We might also look for correlations between any pair of dancers, for example the set of values for the 
pair of velocity angles θ1(t) and θ2(t) of dancer 1 and dancer 2, as these change among inter-frame intervals 
in which there is movement. For the six possible pairings of the four dancers, this circumstance enabling 
additional types of correlation calculations occurs in the majority of the entire 17 intervals. Results for the 
absolute values of the correlation coefficients between directions within a pair are: 
 

Highest correlation coefficient:  ~0.75 between dancers 2 and 4; and between dancers 1 and 3 
Lowest correlation coefficient:  ~ – 0.3 between dancers: 1 and 2; 1 and 4; 3 and 4 
 

 Somewhat related to the preceding is to compare how θ changes in sequential intervals when 
measurable from moving pairs. Thus, it was found that values of θi+1 – θi, related to angular velocity dθ/dt, 
are always much larger in a clockwise direction (i.e. such as the extent of relocating from upstage towards 
extreme stage left and then towards the audience) for dancers 2 and 4 compared at the same times with 
dancers 1 and 3.       
 

 Another correlation coefficient we checked is that between a motion state variable defined by assigning 
0 or 1 to intervals in which the dancer is remaining at a stage location or is moving, respectively. Correlation 
coefficients for any pair of dancers are found to be positive, i.e. tend to be in the same state in any interval, 
more often than being in opposite states.  Highest correlations are near 0.85 for both the pair 1 and 2 and 
the pair 1 and 4. Lowest are near 0.51 for both the pair 2 and 3 and the pair 3 and 4. An observation related 
to these findings is that between 76% and 94% of the time any selected pair of dancers will be in phase, i.e. 
either both moving or both remaining in place. This is a significant departure from a 50% expectation from 
random dancers, and is one measure of the extent to which choreography has introduced order into the 
piece. 
 

The Mathematical Center of Attention, its Attributes and Motion Analyses
in Dance Choreography

277



 
 

 Another aspect of analysis is to find probabilities of events that can be used subsequently in simulating 
a dance having “Apollonian Circles” characteristics. One set of 16 probabilities, tabulated by counting 
events, indicate finding a state of movement M or stationarity S for each dancer during inter-frame intervals. 
Designating this as XXXX for four dancers, each X may be a M or S in the 16 instances. Results for these 
state probabilities are given below the XXXX state description. For example, in 9 of 17 inter-frame intervals 
a state of MMMM occurred, the probability being 9/17 = 0.5294.  
 

        There is another set of probabilities measured by counting inter-frame events that involve what value 
of θi+1 occurs next after θi among the dancers and frames. In the lower half of the Table 2 some 
simplification when counting events was achieved by grouping similar angles to the nearest integral 
multiple of ±45o, thus reducing table size. Its headings have either the prior frame’s θi or stationarity S and 
then the subsequent frame’s θi+1 for which the probability is also noted. The subsets of probabilities having 
a common originating θi or S add to 1.0. 
 

Results as calculated in Table 2 may have various purposes.  These stem from their characterization 
of certain stylistic features a choreographer is using in a particular piece. Possibly in instances where 
substantial revisions are being made the choreographer might wish to have added insights from knowledge 
of how probabilities change.  Quite distinct from this there may be special usage of probability tables such 
as this in future. This might be computer-assisted choreographed dance synthesis. Here a Monte Carlo like 
simulation program uses probabilities in calculating sequential frame coordinates that serves as a 
framework for creating a desired style given to it by tabulated probabilities. 

 
Table 2: Probabilities of patterns in “Apollonian Circles” 

 

MMMM SMMM MSMM MMSM MMMS SSMM SMSM SMMS 

0.5294 0.0294 0.0294 0.0294 0.0294 0.0196 0.0196 0.0196 

        

MSSM MSMS MMSS MSSS SMSS SSMS SSSM SSSS 

0.0196 0.0196 0.0196 0.0294 0.0294 0.0294 0.0294 0.1176 
 

S,180 S,0 S,–90 180, 90 180,–90 135,–90 90, 135 90,–90 45, 90 45, –90 0,  90 –90,45 

0.47 0.33 0.2 0.71 0.29 1 0.5 0.5 0.5 0.5 1 1 

 
 A visual display of how the CA moves around may be seen in the trajectory in Figure 4. This analysis 
uses a subset of 15 of the data frames. The points plotted are the weighted averages of the x and y locations 
of dancers where ti is the time at the ith data point, with i indicated in italics. Each point thus incorporates 
the four dancers’ weights and coordinates rather than simply the coordinates. Additionally, the average 
weight is coded for each frame. Some quantitative features of this trajectory may be readily obtained from 
its CA values and associated times. These features are the properties of the distribution of time intervals Δt 
between frames chosen where significant data descriptive changes occurred. Another distribution of 
trajectory features in the table below is from gross tracking of trajectory points movement by their radial 
distances from the average CA (which is at x = – 0.162 and y = – 0.131), irrespective of angular direction. 
Also path-lengths of CA motion seen within Figure 4 have features of their statistical distribution calculated 
from individual radial distances and summarized in Table 3.  
 

The interpreter’s average time interval, 4.6 sec for the 15 frames indicates how often significant 
location or weight changes occur. Figure 4’s radial CA quantifiers in Table 3 show it mostly confined to 
within the central stage area. This weighted average location of the four dancers remains somewhat 
centralized in spite of individual dancers having x and y coordinates up to 2. Examination of  distances the 
CA moves between frames shows most of these being well under 1 unit. (These calculations are shown in 
detail in [5].) However one occurrence of 1.58 units in this 69 seconds (frequency = 1/69 sec-1) appears 
between frames 3 and 4 - perhaps more meaningful than distribution skew (i.e. asymmetry in occurrences 

Schaffer, Thie and Williams

278



 
 

above vs. below the median). This extent and frequency of large CA movements in a piece can be a useful 
supplement to skew. 
 

A CA trajectory such as Figure 4 gives the choreographer a combined space- time overview that 
provides a different perspective than what is seen, spread out in time, in a video. It is beyond the scope here 
to investigate how its properties, only a few illustrated in Table 3, may be an aid. It is likely that a learning 
process would be needed to uncover these, such as the choreographer observing trajectory properties change 
as changes are made in a development of a particular work. It would be a goal here to discover any particular 
impact that detailed knowledge of the CA trajectory might have. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  Figure 4: Trajectory of the CA 
 

Table 3: Trajectory features 

  Δt  radial distance  path-length 
median 4.00  0.37  0.56 
average 4.60  0.49  0.66 
SD 3.50  0.38  0.30 
skew 2.46  1.40  2.40 
Largest 16.0  1.51  1.58 
Smallest 2.00  0.14  0.35 
Range 14.0  1.37  1.23 
Largest change 13.0  1.14  1.08 
      

 

w scale

1 1.25 1.5 1.75 2

0.5

–0.5

0.5–0.5

–1

–1.5

–2

1

1.5

1

2

3

4

5

6

7

8

9
10

11
12

13

14

15

The Mathematical Center of Attention, its Attributes and Motion Analyses
in Dance Choreography

279



 
 

Summary and Conclusions 
We have demonstrated a variety of measurements that can be derived from a quantitative focus on the CA. 
However, a better sense of the possibilities may become apparent when many more dances are digitized in 
a similar way, and we search for quantitative characteristics between works by a single choreographer, 
between choreographers, or between dance forms. A related next step will be to prepare software that allows 
choreographers or dance viewers to digitize dances from videos. We are experimenting with software that 
corrects non-ovehead video calculations to overhead video for ease of tabulation. Classroom applications 
might include having students do similar analyses of dances performed at their school, as well as including 
orthogonal regression as a topic in statistics or linear algebra classes,  
 

It might also be that this work relates to interests well outside those of the dance. The nephew of one 
of the authors, researching leopards in Africa, has affirmed that studies of these and American mountain 
lions’ defined activity center may have attributes and analyses akin to those of the CA [2]. Another example, 
somewhat speculative, is assisting in strategizing and training of American football quarterbacks who must 
make optimal use of a few seconds to ‘read’ defenders’ locations with a few sequential CA’s before making 
his pass decision. Data might be acquired from existing expertly interpreted pass plays, or even Monte 
Carlo simulations having varieties of CA sequences, given the statistical behavior of specific players and 
configurations encountered. Such would show best pass completion percentages achieved with their optimal 
accompanying CA strategizing. 
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