
Hex-Chaos Compositions and Equivalence Classes of Packing
Problems

Gary R. Greenfield

University of Richmond, Virginia, USA; ggreenfi@richmond.edu

Abstract
We consider a generative art scheme that uses zero-one labelings of the edges of all the cells of a grid and chaotic
one-dimensional cellular automata to assign hexadecimal digits to the cells of the grid. This allows us to color all
the cells by mapping hex digits to colors. We invoke a genetic algorithm to maximize the number of occurrences of
two hex digits thereby evolving what we call hex-chaos compositions. Using elementary group theory we prove, up
to equivalence, there are thirteen different types of hex-chaos compositions.

Introduction

Let Gm,n denote the the set of m × n grids whose cells are labeled with hexadecimal digits. If X =
{0, . . . , 9, a, . . . , f }, then Gm,n = { xr,c : xr,c ∈ X, for 1 ≤ r ≤ m, 1 ≤ c ≤ n}. Each cell of a hex grid
X = xr,c ∈ Gm,n has four edges. Suppose the edges of all the cells are labelled using zeros and ones. Then
a generic cell xr,c has top, left, bottom and right edge labels hr,c, vr,c, hr+1,c and vr,c+1. The horizontal edge
labels determine an (m + 1) × n matrix H = (hp,q), while the vertical edge labels determine an m × (n + 1)
matrix V = (vs,t ). We say X is a pullback if there exist H and V such that for all r and c, xr,c is equal to the
conversion of the base two representation of the four digit binary number formed by concatenating the edge
labels counterclockwise from the top to a hex digit i.e., xr,c equals the hex value of the decimal

8hr,c + 4vr,c + 2hr+1,c + vr,c+1.

In this case, we write X = H �V . We denote the set of m× n hex grids that are pullbacks by Pm,n. Evidently,
the way to construct pullbacks is to interleave matrices of zeros and ones of the appropriate dimensions and
then use the binary to hex conversion formula to determine the hex labels.

Example 1. Let m = 4, n = 5. Set

H =

©«
1 1 0 0 1
1 1 1 0 0
1 1 1 0 0
1 1 0 0 1
0 1 1 1 0

ª®®®®®¬
, V =

©«
1 1 0 1 1 0
1 0 1 0 1 1
0 0 1 0 0 1
0 1 1 0 0 1

ª®®®¬ .
Then interleaving gives

X =



1 1 0 0 1
1 x1,1 1 x1,2 0 x1,3 1 x1,4 1 x1,5 0

1 1 1 0 0
1 x2,1 0 x2,2 1 x2,3 0 x2,4 1 x2,5 1

1 1 1 0 0
0 x3,1 0 x3,2 1 x3,3 0 x3,4 0 x3,5 1

1 1 0 0 1
0 x4,1 1 x4,2 1 x4,3 0 x4,4 0 x4,5 1

0 1 1 1 0


.
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and using the binary to hex conversion formula gives the pullback

X = H �V =

f e 3 5 c
e b e 1 5
a b c 0 3
9 f 6 2 9

.

For visualization purposes we assign a color ramp of sixteen shades of blue to the hex values 0 through f . To
add visual interest to the construction we choose two hex values 0 ≤ x1 < x2 ≤ f and recolor them so they
they stand out. If we choose x1 = 5 and x2 = 9 and assign them the colors brown and yellow respectively, we
obtain the visualization for the X of Example 1 shown in Figure 1.

Figure 1: A visualization of the hex labeled grid in Example 1 obtained by mapping 5 to brown, 9 to yellow
and all other hex labels to shades of blue.

Adding Chaos

Following an idea first proposed by Cruz et al. [1], we now require the edge labels of our pullbacks to be
the outputs of iterates of chaotic or eventually periodic one-dimensional cellular automata [3]. Thus, we let
H0 be an (m + 1) × n matrix with randomly generated zeros and ones and V0 be an m × (n + 1) matrix of
randomly generated zeros and ones. We assign one dimensional automata to the m + 1 rows of H0 and the
n + 1 columns of V0. We define Hi and Vi inductively by letting Hi+1 and Vi+1 be the matrices obtained by
treating the rows of the Hi matrix and the columns of the Vi matrix as the inputs to the respective automata,
yielding the rows of the Hi+1 matrix and the columns of the Vi+1 matrix as the outputs.

Example 2. Let m = 4, n = 5. Choose Rule 30 for the rows and Rule 54 for the columns. Let

H0 =

©«
1 1 0 0 1
1 0 1 1 1
1 0 1 1 1
1 1 0 0 1
1 0 1 0 1

ª®®®®®¬
, V0 =

©«
1 0 1 1 1 0
1 0 1 0 1 1
0 1 0 0 0 1
0 1 1 0 0 1

ª®®®¬ .
Then H500 and V500 are the matrices H and V that gave rise to the pullback grid X of Example 1.

Hex-Chaos Compositions

Let m = 30, n = 40, and continue to use Rule 30 for rows and Rule 54 for columns. Towards the Cruz et
al. goal of “harnessing chaos” we consider the following scheme for maximizing the number of occurrences
of the two distinguished hex values x1 and x2 in the central region of a pullback hex grid. If X500 is a
pullback induced after 500 iterations starting from H0 and V0 (i.e., X500 = H500 �V500), let ci be the number
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of occurrences of xi in X500, wi be the number of occurrences of xi in the centered 3/5m × 3/5n subgrid of
X500 and oi = ci − wi. Then the fitness of X500 is defined to be

F(X500) = min(c1, c2) + (w1 + w2) − (o1 + o2).

This function preferences pullbacks where the number of x1’s and x2’s are nearly equal, rewards pullbacks
where occurrences of x1 and x2 are within the central window and penalizes pullbacks where occurrences of
x1 and x2 are outside the central window.

We invoke a so-called 1 + 1 genetic algorithm by forming H ′0 and V ′0 from H0 and V0 by changing either
one entry of H0, one entry of V0 or one entry of both, and replacing X0 by X ′0 whenever F(X ′500) ≥ F(X500).
This implements simple hill climbing such that the rows and columns of H0 and V0 are, via indirect feedback,
forced to cooperate to maximize fitness. We let the algorithm run for 25,000 generations. That is, we make
25,000 attempts to improve fitness. Further details about the motivation, algorithm design and choice of
parameter settings can be found in Greenfield [2].

Figure 2 shows three examples of hex-chaos compositions evolved using our evolutionary algorithm.
From a distance they may look quite similar, but up close each one presents a different visual challenge to the
viewer. Namely, what are the rules for the two distinguished colors? For example, for browns and yellows
one finds: browns can be vertically or horizontally adjacent to each other, yellows cannot, and if brown and
yellow are ever horizontally (respectively, vertically) adjacent then yellow must be on the left (respectively,
on top). We leave it to the reader to infer the adjacency rules for the other two examples.

Packing Problems

Since we are trying to pack approximately an equal number of x1’s and x2’s into the central window, this
raises the question of how many occurrences of x1 and x2 one can pack into an m × n pullback in general. Of
course to consider such a question we will have to drop the assumption that the pullback is an iterate. Thus
we wish to consider the problem of determining

Γm,n(x1, x2) = max
P∈Pm,n

min(ηx1(P), ηx2(P)),

where, for x ∈ X and G ∈ G, ηx(G) equals the number of occurrences of x in G. This is a challenging
problem. We offer the following examples whose proofs appear in Greenfield [2].

Theorem 3. Let x1 = 5, x2 = f . Then Γm,n(5, f ) equals bmn/2c − 1 if m is even and n is odd, and bmn/2c
otherwise.

Theorem 4. Let x1 = 0, x2 = f . Then

Γm,n(1, 2) =


max((m − 1)n/2,m(n − 1)/2) if m, n are odd
max((m − 2)n/2 + n/2,m(n − 2)/2 + m/2) if m, n are even
max((m − 2)n/2 + (n − 1)/2,m(n − 1)/2) if m is even, n is odd
max((m − 1)n/2,m(n − 2)/2 + (m − 1)/2) if m is odd, n is even.

The proofs construct P’s for which ηx1(P) = ηx2(P). If we let

Em,n(x1, x2) = {P ∈ Pm,n : ηx1(P) = ηx2(P)},

and define
Υm,n(x1, x2) = maxE∈Em,n(x1,x2) ηx1(E),

this leads to the conjecture
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Figure 2: Hex-chaos compositions. Top: x1 = 2 (green), x2 = 5 (brown). Middle: x1 = 5 (brown), x2 = 9
(yellow). Bottom: x1 = 5 (brown), x2 = f (black).
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Conjecture A. Υm,n(x1, x2) = Γm,n(x1, x2).

Equivalently, if we denote the set of attained maximums by

Mm,n(x1, x2) = {M ∈ Pm,n : min(ηx1(M), ηx2(M)) = Γm,n(x1, x2)}

we have

Conjecture B.Mm,n(x1, x2) ∩ Em,n(x1, x2) , ∅.

Packing Problem Equivalences

For fixed m and n, using the convention 0 ≤ x1 < x2 ≤ f , ostensibly there are 120 packing problems to
consider. Our goal is to prove that there are really only thirteen such problems and thus, up to the equivalence
relation defined below, only thirteen different kinds of hex-chaos compositions.

If B = (bi, j) is k × ` matrix of zeros and ones we define its complement χ(B) to be J − B where J is the
k × ` matrix all of whose entries are ones. Complements establish four bijections of Pm,n with itself, χI , χR,
χC , χB = χR ◦ χC = χC ◦ χR corresponding to the identity, complementing the row edges, complementing
the column edges, and complementing both the row and column edges. That is,

χI (H �V) = H �V

χR(H �V) = χ(H) �V

χC(H �V) = H � χ(V)

χB(H �V) = χ(H) � χ(V)

These bijections induced hex label permutations ψI , ψR, ψC , ψB that are wholly determined by what happens
to the edges of a “generic” cell. At this juncture it is convenient to change notation and use edge labels that
reflect the ordering used for binary to hex conversion. We have

e1
e2 x e4

e3

 −→


1 − e1
e2 ψR(x) e4

1 − e3

 ,


e1
1 − e2 ψC(x) 1 − e4

e3

 ,


1 − e1
1 − e2 ψB(x) 1 − e4

1 − e3


whence running through the sixteen possibilities for the base two representation of x as (e1e2e3e4)2 establishes
ψR with (e1e2e3e4)2 −→ ((1 − e1)e2(1 − e3)e4)2 as

ψR =

(
0 1 2 3 4 5 6 7 8 9 a b c d e f
a b 8 9 e f c d 2 3 0 1 6 7 4 5

)
,

and, similarly, we obtain

ψC =

(
0 1 2 3 4 5 6 7 8 9 a b c d e f
5 4 7 6 1 0 3 2 d c f e 9 8 b a

)
,

ψB =

(
0 1 2 3 4 5 6 7 8 9 a b c d e f
f e d c b a 9 8 7 6 5 4 3 2 1 0

)
.

If M = (mi, j) is a k × ` matrix we define the reflection of M about the vertical axis ν(M) to be the
k × ` matrix (ni, j) where ni, j = mi,(`+1)−j , and the reflection of M about the horizontal axis µ(M) to be the
k × ` matrix (ui, j) where ui, j = m(k+1)−i, j . These operations together with the matrix transpose operation
(M t = (ti, j) where ti, j = mj,i) allow us to mimic the action of the dihedral group of order eight on an m × n
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pullback. We realize this group as four clockwise rotations of 0(90), 1(90), 2(90), and 3(90) degrees plus
four reflections h, v, d and a about the horizontal, vertical, diagonal, and antidiagonal axes. We define

ζ0(H �V) = H �V

ζ1(H �V) = ν(V t ) � ν(Ht )

ζ2(H �V) = (µ ◦ ν)(H) � (µ ◦ ν)(V)

ζ3(H �V) = µ(V t ) � µ(Ht )

ζh(H �V) = µ(H) � µ(V)

ζv(H �V) = ν(H) � ν(V)

ζd(H �V) = V t � Ht

ζa(H �V) = (µ ◦ ν)(V t ) � (µ ◦ ν)(Ht )

The four bijections that involve transposes map m× n pullbacks to n×m pullbacks. We let π∗ denote the
induced hex label permutation for ζ∗. We know π0 = ψI is the identity permutation. To determine the other
induced permutations, we again use our generic cell mapping notation, but now we must recognize that the
cell containing hex label xi, j is being moved before it is relabeled. If we write τ(M) for M t so the notation
is consistent, then we can track label movement by making appropriate index calculations. For example,
ζ1((i, j)) = (ν ◦ τ)((i, j)) = ν(( j, i)) = ( j, (m + 1) − i) tells us that the label in cell (i, j) will be moved to
cell ((n + 1) − j, i) and relabeled according to the permutation π1 shown below. Because we know we are
recovering the dihedral group, we only calculate ζ1 and ζv:

e1
e2 x e4

e3

 −→


e2
e3 π1(x) e1

e4

 ,


e1
e4 πv(x) e2

e3


gives

π1 =

(
0 1 2 3 4 5 6 7 8 9 a b c d e f
0 2 4 6 8 a c e 1 3 5 7 9 b d f

)
,

πv =

(
0 1 2 3 4 5 6 7 8 9 a b c d e f
0 4 2 6 1 5 3 7 8 c a e 9 d b f

)
.

Writing the non-identity permutations as products of disjoint cycles provides

ψR = (0 a)(1 b)(2 8)(3 9)(4 e)(5 f )(6 c)(7 d)

ψC = (0 5)(1 4)(2 7)(3 6)(8 d)(9 c)(a f )(b e)

ψB = (0 f )(1 e)(2 d)(3 c)(4 b)(5 a)(6 9)(7 8)
π1 = (0)(1 2 4 8)(3 6 c 9)(5 a)(7 e d b)( f )

π2 = (0)(1 4)(2 8)(3 c)(5)((6 9)(7 d)(a)(b e)( f )

π3 = (0)(1 8 4 2)(3 9 c 6)(5 a)(7 b d e)( f )

πh = (0)(1)(2 8)(3 9)(4)(5)(6 c)(7 d)(a)(b)(e)( f )

πv = (0)(1 4)(2)(3 6)(5)(7)(8)(9 c)(a)(b e)(d)( f )

πd = (0)(1 2)(3)(4 8)(5 a)(6 9)(7 b)(c)(d e)( f )

πa = (0)(1 8)(2 4)(3 c)(5 a)(6)(7 e)(9)(b d)( f )

The permutations ψR and ψC generate a subgroup of S16 isomorphic to the Klein four group using the familiar
relations

ψ2
R, ψ

2
C, ψRψC = ψCψR,
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while the permutations π1 and πv generate a subgroup of S16 isomorphic to the dihedral group of order eight
using the familiar relations

π4
1, π

2
v, πvπ1 = π

3
1πv .

(Note that π1πv = πd, π2
1πv = πh and π3

1πv = πa.) However, the subgroup of S16 of order thirty two that
these four permutations generate is not an internal direct product of the subgroup < π1, πv > of order eight
with the subgroup < ψR, ψC > of order four because even though

ψRπv = πvψR, ψCπv = π1ψC,

we also have
ψRπ1 = π1ψC, ψCπ1 = π1ψR .

To organize the calculation of equivalence classes of packing problems, we use a 4 × 8 table showing
how each of the thirty two permutations in

< π1, πv, ψR, ψC >= {πi1π
j
vψ

k
Rψ

`
C : 0 ≤ i ≤ 3, 0 ≤ j, k, ` ≤ 1}

acts on an instance (x1, x2)— by letting the permutation act on each entry — in such a way that the first four
columns show m × n equivalences and the last four show n × m equivalences. An example illustrates how
this works.

(0, 1) π0 π2 πh πv π1 π3 πd πa

ψI (0, 1) (0, 4) (0, 1) (0, 4) (0, 2) (0, 8) (0, 2) (0, 8)
ψR (a, b) (a, e) (a, b) (a, e) (5, 7) (5, d) (5, 7) (5, d)
ψC (5, 4) (5, 1) (5, 4) (5, 1) (a, 8) (a, 2) (a, 8) (a, 2)
ψB ( f , e) ( f , b) ( f , e) ( f , b) ( f , d) ( f , 7) ( f , d) ( f , 7)

Even though for the purpose of equivalence the pairs should show the smaller value first, the ordering
of the pairs in the table is useful. For example the ( f , 7) in the ψB row and π3 column tells us that the
mapping from Pm,n to Pn,m which takes H � K to (ζ3 ◦ χB)(H � K) will relocate all the 0’s and 1’s while
simultaneously relabeling them as f ’s and 7’s, respectively, because (π3 ◦ ψB)(0) = f and (π3 ◦ ψB)(1) = 7.
This, in turn, tells us Γm,n(0, 1) = Γn,m(7, f ) or equivalently, if we can solve the (0, 1) packing problem for all
problem instances then we can solve the (7, f ) packing problem for all problem instances. Thus, if we denote
the equivalence class of packing problems for (x1, x2) by [(x1, x2)], then the table reveals

[(0, 1)] = {(0, 1), (0, 2), (0, 4), (0, 8), (1, 5), (2, a), (4, 5), (5, 7),
(5, d), (7, f ), (8, a), (a, b), (a, e), (b, f ), (d, f ), (e, f )}.

Space prohibits showing the calculations for all thirteen equivalence classes. Instead, we show that the
equivalence classes are not all the same size by providing

(1, 4) π0 π2 πh πv π1 π3 πd πa

ψI (1, 4) (4, 1) (1, 4) (4, 1) (2, 8) (8, 2) (2, 8) (8, 2)
ψR (b, e) (e, b) (b, e) (e, b) (7, d) (d, 7) (7, d) (d, 7)
ψC (4, 1) (1, 4) (4, 1) (1, 4) (8, 2) (2, 8) (8, 2) (2, 8)
ψB (e, b) (b, e) (e, b) (b, e) (d, 7) (7, d) (d, 7) (7, d)

which yields
[(1, 4)] = {(1, 4), (2, 8), (7, d), (b, e)},
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and
(3, c) π0 π2 πh πv π1 π3 πd πa

ψI (3, c) (c, 3) (9, 6) (6, 9) (6, 9) (9, 6) (3, c) (c, 3)
ψR (9, 6) (6, 9) (3, c) (c, 3) (3, c) (c, 3) (6, 9) (9, 6)
ψC (6, 9) (9, 6) (c, 3) (3, c) (c, 3) (3, c) (9, 6) (6, 9)
ψB (c, 3) (3, c) (6, 9) (9, 6) (9, 6) (6, 9) (c, 3) (3, c)

which gives
[(3, c)] = {(3, c), (6, 9)}.

Table 1 lists the thirteen equivalence classes and their cardinalities. The choice of representative is
lexicographical and classes are ordered lexicographically. With reference to Figure 2, we note that (2, 5)
belongs to [(0, 7))], (5, 9) belongs to [(0, 3)] and (5, f ) belongs to [(0, 5)]. With reference to Theorem 3, (5, f )
belongs to [(0, 5)].

Table 1: Equivalence Classes of Hex-Chaos Compositions.

equivalence class cardinality
[(0, 1)] 16
[(0, 3)] 16
[(0, 5)] 4
[(0, 7)] 16
[(0, f )] 2
[(1, 2)] 16
[(1, 3)] 16
[(1, 4)] 4
[(1, 6)] 16
[(1, b)] 4
[(1, e)] 4
[(3, 6)] 4
[(3, c)] 2

Summary and Conclusions

We have described a generative art scheme incorporating chaotic one-dimensional cellular automata and hex
labelings of the cells of a grid in order to evolve minimalist artworks called hex-chaos compositions. We
then showed how this led to a suite of 120 packing problems which, thanks to some elementary group theory,
could be organized into thirteen equivalence classes, thereby revealing there were exactly thirteen different
types of hex-chaos compositions and presenting us with thirteen challenging packing problems to solve. To
date we have solved seven of these problems.
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