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Abstract
A chord diagram is a degree three graph with a designated outer circle. It looks like a circle with lines going across it.
The intersection graph of a chord diagram is a graph that shows how the lines inside the circle cross each other. Many
chord diagrams can share an intersection graph. The intersection graph conjecture asks, “If two chord diagrams share
an intersection graph are they equal for a sense of equality of chord diagrams?” I found a new family of intersection
graphs for which the answer to this question is “yes.” I have included some artwork that I produced while discovering
this result.

Background
In this paper, I share a result that was aided by artistic exploration I engaged in while working on the problem.
As I will explain, a drawing I made while exploring properties of chord diagrams helped me to articulate and
prove a theorem involving intersection graphs. Figure 1 depicts such artwork I made in pursuit of the theorem
I will present in this paper. In order to share the result I first present some initial definitions and ideas. To read
more about the background information, Introduction to Vassiliev Knot Invariants by Chumtov, Duzhin,
and Mostovoy [3] is a solid book on the topic.

(a) “2 Loops 1”. (b) “2 Loops 2”.

Figure 1: Two art pieces I created to study the theorem presented in this paper.

In the study of Vassiliev knot invariants, chord diagrams are of key interest. The invariants are properties
that do not change for “equal” knots. I focus especially on singular knots, which are knots with finitely many
arbitrarily fused crossings. These fused crossings are a single point rather than two separate points in three-
space. Figure 2 (a) depicts a fused crossing and Figure 2 (b) depicts a non-fused crossing, where the knot
outside the dotted lines can be any knot. Only the order in which the double points occur is important for
these invariants, not the non-fused crossings. Chord diagrams are useful representations for thinking about
singular knots. Figure 2 (c) and (d) show a singular knot with its chord diagram. A chord diagram is a degree
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Figure 2: Fused and non fused crossings and a singular knot with its chord diagram.

three graph, (a graph where all the vertices have three edges), with a designated outer circle that represents
the order in which the double points occur on a singular knot. It is created by starting at a double point and
placing a vertex on the circle. Label this point 1. Travel clockwise along the knot, place a vertex on the circle
every time you encounter a double point, and label it. If you encounter a double point for the second time
keep the label the same. Once you get back to your starting point, place edges inside the circle connecting the
two occurrences of each double point. The edges inside the circle are called chords, hence the name “chord
diagram.”

Next, I will discuss the four-term relation, which is the fundamental notion of equivalence that was
important in my work. Essentially, the four-term relation allows me to express one chord diagram as a
combination (sum and difference) of three other chord diagrams. It is called the four-term relation since
it involves four chord diagrams. Consider the formal vector space of all chord diagrams with n chords
over the field of rational numbers. The four-term relation is an equivalence relation on this space, defined
schematically in Figure 3.

In the example in Figure 3 (b), the chords involved in the relation are depicted as gray and the other
chords are depicted in black. In the example in Figure 3 (b), the moving lighter gray chord is in a different
position with respect the stationary darker gray chord in all four chord diagrams.

The general statement of the four-term relation shows equivalence between two different differences of
particular chord diagrams (Figure 3 (a)). For my purposes I tend to use the relation to express one chord
diagram in terms of three other diagrams (Figure 3 (b)), so that they satisfy the relation. I have labeled
the chord diagrams involved in the example A,B,C,and D for reference. In the example some of the chord
diagrams can be combined but I have declined to combine them for the sake of illustration. In particular, in
Figure 3 (c), we see that I can express chord diagram B as A - C + D. In this way, I can leverage this relation
in order to simplify work with chord diagrams. This relation is invariant under rotating the chord diagram.

Figure 3: The four-term relation.
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(a) (b) (c)

Figure 4: A share and the generalized four-term relation.

Our next important concept is that of a share. A share is a set of chords and a division of the circle into
four arcs so that no chord ends on adjacent arcs. That is, the endpoints of the demarcation of circle into arcs
is part of the share. The two sets of arcs opposite each other partition the chords into two sets, the share
and its complement. The complement of a share is also a share. Figure 4 (a) and 4 (b) show an example of
a share with a non-example. In Figure 4 (a), the light gray chords form a share since all of the gray chord
endpoints are in the top and bottom highlighted arcs. In the non-example in Figure 4 (b), the set of chords
highlighted in light gray does not form a share since the bolded chord intersects the light gray chords. I
marked and highlighted the four arcs involved with the top and bottom arcs containing the light gray chords,
but the bolded chord touches with its left endpoint a black arc and a highlighted arc with its right endpoint,
making the light gray chords not a share. For the chord diagram in Figure 4 (b), the bolded chord needs to
be included with the light gray chords in the non-example to form a share.

Chumtov, Dunzhin, and Lando [1] proved that for any share we can generalize the four-term relation as
shown in Figure 4 (b). The proof relies on there being only a single chord and a share and so we can have
any single chord participate with a share. This will be referred to as the generalized four term relation.

The intersection graph of a chord diagram is a graph whose vertices represent the chords and an edge
between vertices whenever the corresponding chords intersect. Every chord diagram has a unique intersection
graph, but different chord diagrams can have the same intersection graph. Figure 5 depicts a chord diagram
(a) with its intersection graph (b). For example, chords 2, 3, and 5 in the figure form a triangle because they
all mutually intersect.

Figure 5: A chord diagram with its intersection graph.

The Intersection Graph Conjecture
The big concept I am interested in regarding intersection graphs is a statement called the Intersection Graph
Conjecture. Trying to solve this conjecture has been a major inspiration for many art pieces I have made.
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Given that these intersection graphs with their chord diagrams are interesting to draw and look at, it is perhaps
not surprising I started making artwork involving them.

The Intersection Graph Conjecture: [3] If D1 and D2 are two chord diagrams with the same intersection
graph, they are equal in the sense of the four-term relation.

This conjecture is false in general but is true in any of the following situations:
a) For all diagrams with up to 10 chords [2], [5],
b) When the intersection graph is a tree [1],
c) When the intersection graph contains a single loop (in other words a single cycle in the graph) [4].

This conjecture will be shown to be true in one more case discussed in this paper.
For the purposes of this paper I will use the word “tree” in the context of a chord diagram to mean a set

of chords whose intersection graph restricted to this set of chords is a tree. Similarly a “loop” inside a chord
diagram will be a set of chords such that the intersection graph restricted to these chords forms a cycle.

An Artistic Approach to a New Case
The Intersection Graph Conjecture is known to be true in the case of one loop, so I wanted to explore the
case of two loops. I learn best by making artistic examples and then looking for patterns. The two art pieces
in Figures 1 (a) and 1 (b) depict what I thought of as the first two cases of two loops. The graph depicted in
Figure 1 (a) has the two loops separated by a single vertex and the graph depicted in Figure 1 (b) has the two
loops separated by a more complicated set of vertices forming a tree.

In each figure there are eleven unique chord diagrams, having a common intersection graph, which are
drawn as the vertices of that graph. The two sets, each with eleven chord diagrams realizing the intersection
graph, were the ones I happened to use and are not necessarily the only eleven chord diagrams with these
graphs. I have used color to highlight relationships. For example, the border for each circle representing a
vertex in the intersection graph is drawn with the same color used to draw the corresponding chord in each
of the chord diagrams. Edges in the intersection diagram are colored with a combination of all vertex colors
in the cycle.

(a) “Mirror Image Proof”. (b) “Necklace of Triangles”.

Figure 6: Two art pieces depicting my mirror image proof and an example of a necklace of triangles
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To approach the Intersection Graph Conjecture, I decided to see if I could make the center chord diagram
in “2 Loops 1” equal its mirror image. The art piece in Figure 6 (a) shows a proof that this diagram is equal
to its mirror image. This exploration of mirror equality inspired me to propose Theorem 1. The share and
chord involved in the generalized four term relation are depicted in red and green respectively. Going from
a shade of purple to a shade of yellow indicates a change to the mirror image of the chord diagram above it.
The chord diagram on the left has an intersection graph with two loops, but the three on the right only have
one loop. The four term relation says that the diagram on the left equals a sum and difference of the diagrams
on the right, so if the Intersection Graph Conjecture applies to the diagrams on the right, it must do so for
the diagram on the left. I then concluded that this proves the diagram on the left equals its mirror image, but
I had actually proven something stronger.

The Theorem
The properties I used in my mirror image proof are generalized in the following theorem.
Theorem 1: The intersection graph conjecture holds for two diagrams sharing an intersection graph with
two loops such that a) one of the two loops is a triangle and b) the two loops are separated by a tree.
Proof: Consider the generalized four-term relation depicted in Figure 7. The corresponding intersection
graphs for each chord diagram in the relation are depicted below each chord diagram. The share interacting
with the moving chord is the dashed group labeled “tree” and the arcs corresponding to this share have been
highlighted. In the diagram on the left of the equality, the loop forming a triangle is the colored moving chord
intersecting the two trees on the left. The other loop is labeled “1 loop” and intersects the bolded chord once.
As a result, the tree attached to the bolded chord along with the bolded chord forms a tree that separates the
loops. The three diagrams on the right hand side of the equation are diagrams with a single loop, the section
marked “1 loop”, to which the intersection graph conjecture applies, as proven by [4]. Therefore, it must also
apply to the diagram on the left hand side. !

Figure 7: The four-term relation in Theorem 1.

I developed the term a necklace of triangles to denote a chord diagram with an intersection graph that
has finitely many loops in a chain separated by trees such that only the loop at the end of the chain is not a
triangle. Figure 8 depicts the general idea of the intersection graph of a necklace of triangles.
Corollary: The intersection graph conjecture is true for a necklace of triangles.
Proof: The proof is by induction on the number of triangles in the graph.

Base case: There is only 1 triangle and 1 other loop. This is exactly the case in Theorem 1.
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Figure 8: The general form of the intersection graph of a necklace of triangles.

Now suppose the intersection graph conjecture is true whenever we have n triangles in the necklace.
Consider a necklace of n + 1 triangles. Then apply the four term relation in Theorem 1. Instead of a single
loop in the portion on the right, there is a necklace of n triangles. So, all three diagrams on the right satisfy
the intersection graph conjecture as in the inductive hypothesis, showing it is true for the diagram on the left.

Thus, by induction I can extend Theorem 1 to a whole necklace of triangles. !
The art piece in Figure 6 (b) depicts an example of a necklace of triangles with both the intersection

graph and a chord diagram. The colors of the chord correspond to the colors of its vertex on the intersection
graph. I drew this piece to visualize a larger necklace of triangles from a simple example intersection graph.

Summary and Conclusions
Through the exploration of my artwork on the subject I was able to discover a new family of chord diagrams
for which the Intersection Graph Conjecture is true. Working with an example in an art piece, I found a single
generalized four term relation that made a very specific type of chord diagram satisfy the Intersection Graph
Conjecture. I then extended the properties to an infinite family that also satisfy the conjecture.
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