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Abstract

We describe challenges and opportunities that arise if one attempts to visualize number theory. The goal is to create
graphics which convey a theorem or argument, which tell a story, which are clear and honest, and which enable
exploration. In the context of statistics, this is the mainstay of data visualization. In the number-theoretic context,
problems of visualization are less familiar but tractable. From our pursuit of graphical excellence, we derive a few
broad principles for the visualization of pure and experimental mathematics.

Introduction

Number theory is a strange old field of mathematics. It is not unified by methodology — there is algebraic
number theory and analytic number theory and arithmetic geometry. Rather, number theory is unified by
its devotion to a set of problems. At its core, these are problems about whole numbers, addition, and
multiplication. As its theoretical methods are diverse, so too are the methods of visualization of number
theory. One must visualize large data sets, abstract algebraic concepts, and many kinds of geometry. The
author encountered these challenges while writing An Illustrated Theory of Numbers [10].

The study of multiplication of whole numbers quickly leads to the set of prime numbers, which I view
as the most interesting data set of mathematics. As data sets go, it belongs to the simplest class: a one-
dimensional distribution of whole numbers. But this in itself raises challenges for visualization. Typical
problems of data visualization relate to extracting a visual story from high-dimensional data. For primes,
the interesting story lies in subtle properties of a one-dimensional distribution. How can one visually tell the
story of this data set? The first section addresses this challenge.

The second section addresses the visualization of a finite cyclic group: the multiplicative group ]F;j of
nonzero numbers modulo a prime p. Finite cyclic groups might be the least interesting, from the standpoint of
abstract algebra. But here the generators (called primitive elements) are scattered among the representatives
{1,...,p— 1}. Abstractly simple, this group is the foundation for cryptographic protocols which, like Diffie-
Hellman key exchange [3], are based on the discrete logarithm problem. How does one illustrate the structure
of IF;, in order to convey its abstract simplicity along with the erratic distribution of its primitive elements?

The third section addresses a major modern (1960s) achievement of number theory: the solution of
Gauss’s class-number-one problem for negative discriminants. In the language of binary quadratic forms,
a theorem of Heegner, Baker, and Stark (see Stark’s exposition at [7]) proved a conjecture of Gauss [4,
Art. 303].

Theorem 1 (Baker-Heegner-Stark). The following is the complete list of negative integers A for which there
is a unique proper equivalence class of binary quadratic forms of discriminant A.

-3,-4,-7,-8,-11,-12,-16,-19, =27, -28, —43, 67, —163.

Conway’s topograph provides a visual approach to the study of binary quadratic forms. In particular,
his results allow one to reinterpret the above theorem as a statement about triangles with integer side-length.
This, in turn, allows one to convey the meaning of the above theorem to an audience outside of number theory.
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Art cannot be cleanly separated from function, craft and design. An architect or designer is given a
“brief” to follow, with goals (or functions) together with constraints such as audience and space and gravity
(a building must stand). Their products are described as elegant, an aesthetic judgment to be sure, if form and
function and constraint harmonize rather than conflict. The same is true of mathematical proofs, constrained
by logic and prior knowledge and directed towards a theorem.

While I began work in visualization for pedagogical reasons — teaching number theory — the exercise
of giving visual form to mathematics led to unexpected results. Though I did not think in this way at the
time, I had given myself a brief: to create images which would convey my intuition for number theory (as a
specialist) to an audience of students. Like a mathematical proof, the images had to be honest and without
contradiction. They had to fit on the page, and my tools were limited to programming in Python, and LaTeX
with TikZ.

To present the mathematical form visually — this imperative can drive the creation of beautiful images
which convey deep mathematical ideas. Satisfying the imperative is not enough. Elegance seems to come
from a dialogue between visual aesthetics and mathematical structure. A first attempt may yield a muddled
graphic, ugly colors, awkward proportion. Fixing the visual can raise new mathematical questions — and
sometimes, ideally, the visual solution requires an unexpected perspective on mathematics. There can be a
moment when the visual form seems to enjoy its constraints, and the viewer can explore mathematics just by
sight. That sort of elegance is a rare and valuable artistic reward.

Visualizing the Primes

Euclid (Elements, 1X.20) proved that the set of prime numbers is infinite. The list
2,3,57,11,13,17,19,23,29,31,37,41,43,47 . ..

of prime numbers does not end. Some of the central problems of number theory, e.g., the Riemann Hypothesis,
address the distribution of primes. Although their small-scale structure is quite irregular, their large-scale
structure is amazingly regular. Heuristically, a whole number n has about a 1/ log(n) “chance” of being prime
(where log denotes the natural logarithm). For example, among the thousand numbers between 1000 001
and 1001 000, one would expect about 1000/ log(1 000 000) = 72 primes. (The actual number is 75.)

A minimalist approach to visualizing one-dimensional distributions is given by Brian Hayes in [5, Figure
1]. His method is to simply place a horizontal line segment for each member of a data set. This allows one to
perceive the difference between even and irregular spacing, data points which “repel” one another and those
that cluster, and trends in the density of data.

From this effective minimalist starting point, one can consider the distribution of primes at different
scales: between 1 and 100, 1 and 1000, 1 and 10000. Each column of Figure 1 displays the primes between
1 and 10¢, withe =2,...,9.

The experiment is one of direct display. In the leftmost column, each prime is displayed as a solid
bar, 10 points thick. In the second column, each prime is displayed as a line segment, 1 point thick. In the
third column, each horizontal line segment stands for a range of 10 numbers. Each segment is shaded gray,
according to the number of primes within the range of 10. For example, if a range of 10 numbers contains
4 primes, it is shaded with 40% black ink. By the fourth column, each horizontal line segment stands for a
range of 100 numbers. By the last column, each line segment stands for a range of one million numbers. The
amount of black ink is precisely (as far as the printer can handle) the proportion of primes within the given
range. Note that on some computer screens, a striped appearance is possible due to some “quantization” in
digital image rendering.

212



[llustrating the Theory of Numbers

In the first five columns, the eye can see the transition from small-scale irregularity to large-scale
smoothness. The second column is evidently much more “choppy” than the third or fourth; one reason is
that the gaps between primes do not grow proportionally to the primes themselves. For example, the average
gap between primes near 1000 is about 7, which translates to 7 points of line-thickness in the scale of the
second bar. But the average gap between primes near 10000 is about 9, which translates to just 0.9 points of
line-thickness in the scale of the third bar. In the fourth bar, the average gap between primes appears only
0.1 points thick, and so most gaps cannot be seen. Even the largest gaps become undetectable; the largest
gap between primes up to 1 million is a gap of 114 (between 492 113 and 492 227). Such a gap is only 0.114
points thick in the fifth column (where it would first appear). The absence of visible gaps in the gray bars
reflects the fact that the largest gaps between primes grow much more slowly than the primes themselves.

Among primes up to... 100 1000 10000 100000 1000000 10000000 10000000 1000000000
The largest gap is... 8 20 36 72 114 154 220 282

In the right five columns, the human eye is able to detect the slight lightening of the gray bars from left to
right, and within each bar, from bottom to top, reflecting the gradual “spreading out” of primes. One could
emphasize this by using more ink on the left and less on the right. But the perfect correspondence between
proportion of primes and proportion of black ink yields a gradualism that honestly portrays the 1/log(n)
heuristic. This also fits with Tufte’s design strategy [8] of the “smallest effective difference.”

The red horizontal and diagonal lines in Figure 1 are influenced by the cover image of Edward Tufte’s
The Visual Display of Quantitative Information [9]. They are meant to lead the reader’s eye from left to right,
to imagine (for example) the primes between 1 and 100 squeezed into the bottom tenth of the primes between
1 and 1000, then squeezed into the bottom hundredth of the primes between 1 and 10000.

100 1000 10000 100 000 1.000 000 10 000 000 100 000 000 1 000 000 000
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Figure 1: Primes between one and one billion. From The Distribution of Primes, artwork by the author.
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Visualizing a Cyclic Group

Let p be a prime number. The abelian group ]F;j may be described in elementary terms as follows. It consists
of the set of numbers {1,2, ..., p — 1} and the following rule for multiplication: the product of two elements
a, b of the set is the remainder obtained after dividing ab by p. For example, in FX, the product of 3 and 5
is 1. We write 3-5 = 1 mod 7. The statement that F; is an abelian group is the statement that this law of
multiplication is commutative and associative, that it has an identity element (1), and that every element of
F; has an inverse element. For example, the inverse of 3 is 5 in F%, since 3-5 = 1 mod 7.

It is a theorem of Gauss that the group ]F;; is cyclic. This means that there exists a primitive element —
an element of Fj; which generates all of F; by repeated multiplication. For example, 3 is a primitive element
in IF?, because repeated multiplication by 3 (mod 7) traverses all numbers in {1,. .., 6}:

1335206343553

Here an arrow joins a to b if a - 3 = b mod 7. Finite cyclic groups are the simplest objects of group
theory. But here the structure is concealed because the names of the elements of the group do not reflect the
structure of the group in a simple fashion. Contrast F}; with the additive group (F), +) which is also cyclic;
a primitive element of the additive group is 1 as seen by the repeated addition (modulo 7):

0L 1 o s Ly s e .

In fact, every nonzero element of the cyclic group (F, +) is a primitive element (a generator of the cyclic
group), while primitive elements of IFi“lX7 are distributed haphazardly.

We can interpret this as a statement about the dynamics of repeated multiplication in the group Fj;. What
happens when we start with a number a with 1 < a < p — 1, and repeatedly multiply by another number b
(modulo p)? If b happens to be a generator, one obtains a cycle of length p — 1. If not, one obtains a cycle
whose length is a proper divisor of p — 1. In fact, cyclic groups with p — 1 elements are characterized by the
fact that they have a unique subgroup of any order dividing p — 1. The dynamics encode the structure.

To visualize the cyclic group F, Figure 3 displays all of the dynamics without making choices. A
close-up is below in Figure 2.
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Figure 2: A close-up from Epicycles Modulo 37 (artwork by the author). One the left, 5 is a primitive
element in F%,. On the right, 6 generates a subgroup of order 4 (with 9 cosets).
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Every number b between 1 and 36 generates a subgroup of F},. The full Figure 3 displays these subgroups
and their cosets for all 5. Thus the figure is made of 36 subfigures, as b ranges from 1 to 36 (reading
across then down). The subfigures display a single large circle when b is a primitive element, i.e., when
b e {2,5,13,15,17,18, 19, 20, 22,24,32,35}. All in all, the figure displays 36 x 36 numbers, reflecting all
possible multiplications in the group 3. But a typical “multiplication table” with a 36x36 rectangular grid,
is replaced by “dynamics table” which makes the cyclic structure evident.
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Figure 3: The dynamics of multiplication, modulo 37. From Epicycles Modulo 37, artwork by the author.

Quadratic reciprocity is a landmark theorem in number theory, first proven (in six different ways) by Gauss.
Decades later, Zolotarev [11] proved quadratic reciprocity in yet another way. To start, Zolotarev observed
that if we view multiplication-by-b as a permutation of F;, then the Legendre symbol (%) coincides with the
sign of this permutation. The signs of these permutations are easily readable from a visualization like Figure
3. For example, (%) = (=1)° = —1, since multiplication by 6 yields 9 cycles of length four (see Figure 3),
and every length-four cycle has sign —1. The Legendre symbol is evident in the figure.

An unexpected outcome of this visualization, and a source of its aesthetic appeal, is an approximate
symmetry. If x + y = 37, then an exercise in group theory demonstrates that x and y generate subgroups
of F}, of the same order, or else one subgroup has twice the order of the other. For example, in the top-left
subfigure and bottom-right subfigure, one finds subgroups of orders 1 and 2, respectively. When x = 2 and
y = 35, we find subgroups of order 36 in both cases; both are primitive elements. When x = 3 and y = 34,
we find subgroups of orders 18 and 9, respectively. This “almost-equality” (up to a possible factor of 2) gives
the whole array a “near-symmetry” with respect to 180-degree rotation. Beyond aesthetics, the image allows
the reader to explore and notice previously unseen patterns.
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Visualizing Binary Quadratic Forms via Integer Triangles

Lastly, we turn to the visualization of a theorem: the complete solution to Gauss’s class-number-one problem
for binary quadratic forms of negative discriminant. This theorem is difficult to explain to a novice, but a brief
survey follows. In his Disquisitiones [4], Gauss makes a detailed study of binary quadratic forms (BQFs,
hereafter), functions Q: Z? — Z of the form

0(x,y) = ax® + bxy + ¢y

Gauss requires a, b, ¢ to be integers; Gauss required b to be even, but today this assumption is relaxed. Each
BQF has a discriminant: the number A(Q) = b* — 4ac familiar to those who know the quadratic equation.
The number A(Q) is either a multiple of 4 (if b is even) or one more than a multiple of 4 (if b is odd).

Two binary quadratic forms are called properly equivalent if they are related by a change of variables
matrix with determinant 1. To denote this, we write Q ~ Q’ if there exists a matrix g € SL,(Z) such that
Q' (x,y) = Q0((x,y) - g) for all x, y € Z. Properly equivalent BQFs have the same discriminant.

Gauss proved that, for any nonzero A, there are finitely many proper equivalence classes of binary
quadratic forms of discriminant A. The number of proper equivalence classes of primitive BQFs of discrim-
inant A is called the class number and denoted A*(A). Here, primitive means that GCD(a, b,¢) = 1. For
negative discriminants, 2*(A) increases gradually (though not monotonically) as |A| increases. In particular,
Gauss conjectured that there are only finitely many negative integers A for which 2" (A) = 1. This was solved
by Heegner, Baker, and Stark (Theorem 1): the complete list of negative A for which 2*(A) = 1 is

-3,-4,-7,-8,-11,-12,-16,-19, =27, 28, 43, 67, —163.

In his Sensual (quadratic) Form [2], John H. Conway introduces the topograph — an arrangement of the
values of a BQF on regions bounded by a ternary-regular tree in the hyperbolic plane. When Q has negative
discriminant, Conway’s topograph contains a unique well or double-well: a location at which the values are
minimal, in a sense.

Figure 4: Conway’s topographs for Q(x,y) = x> — xy + y> and Q(x, y) = x* + y%. The well on the left has
the triple of values (1,1, 1). The double-well on the right has values (1, 1,2).

More precisely, a well can be located on the topograph as a triple of numbers (u, v, w) surrounding a point,
such that the (weak) triangle inequalities hold:

u+vzaw, v+w>>u wH+uz=v.

It is a theorem, essentially of Gauss, but reformulated by Conway in terms of wells, that the equivalence class
of a binary quadratic form is determined by the triple of numbers surrounding its well. Conversely, every
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triple (u, v, w) of positive integers satisfying the triangle inequalities determines a unique equivalence class
of binary quadratic forms. The discriminant of these BQFs is given by

A =u? + v+ w? = 2uv — 2vw — 2w,

Thus, to visualize the proper equivalence classes of BQFs of negative discriminants, it is equivalent
to visualize all triangles with integer side-lengths (u,v,w). We must allow “degenerate triangles” — line
segments with u + v = w, for example. In Figure 5, we organize these triangles horizontally by discriminant
(the number A above) and vertically by their smallest side-length.

A
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Figure 5: Primitive triangles with integer sides u, v, w, arranged horizontally by discriminant
u? +v2 + w? = 2uv — 2vw — 2wu and vertically by min{u, v, w}. (Artwork by the author.)

Negative discriminants, —3, -4, -7, -8, —11, —12, . . ., —163 are marked by vertical “pinstripes,” and numbered
at the bottom. The thinnest triangles along the bottom correspond to the “principal classes” of binary quadratic
forms (those with smallest side length 1). Some triangles are isosceles, and others are paired with their mirror-
image. This enables the reader to compute 4% (A) by simply counting the number of triangles along a given
vertical line. For Gauss’s class number (based on proper equivalence), the non-isosceles triangles and their
mirror images are counted separately. For example, 4" (-31) = 3. Isosceles triangles correspond to Gauss’s
ambiguous forms, capturing the “2-torsion of the class group” in modern terminology.

The rightmost line contains a single triangle, reflecting the endpoint of the Baker-Heegner-Stark theorem:
—163 is the last negative discriminant with class number one. In fact, the whole theorem becomes a statement
about triangles with integer side length — if one continued Figure 5 further to the right, one would never again
find a vertical line with only one triangle on it.

The parabolic separation of light and dark reflects a classical bound: the smallest side-length of a triangle
is bounded by v/A/3. Equivalently, the smallest nonzero value of a positive-definite BQF of discriminant A
is bounded by VA/3.
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Principles for Visualizing Mathematics

From creating these images, I have distilled a few principles for visualizing mathematics.

First: Directly show the raw data. Try to represent your data points (e.g., all multiplications in [F},)
directly, with simple dots, lines, numbers, etc. Do not bin your data or summarize until the direct portrayal
has a chance to suggest patterns.

Second: Bring mathematics into the deep design. The image in Figure 5 began with a simple concept:
draw all integer-side triangles, arranged by discriminant and smallest value. When standard data-graphics
elements like axes with tick marks, grids, etc., failed, mathematics guided the way. The vertical lines of
Figure 5 serve as gridlines at the same time as they exhibit the pattern of possible discriminants. To represent
the smallest-value bound min{u, v, w} < VA/3, I drew a parabolic curve at first. But the curve seemed to
clutter the image without conveying the message. Eventually, the curve became the border between dark and
light, which underlies the composition of the piece. In terms of perception, the bound became the ground
and the triangles the figure. Mathematics not only provided data, but deeply influenced the design.

Third: Visualize mathematics at multiple scales. When we look at an image, our eyes follow a
jumpy path [6] guided by the image’s composition. Our graphics can tell a nuanced story if they operate
compositionally on a large scale and also offer fine detail (visually and mathematically). The broad structure
of Figure 3 reflects the structure of a cyclic group. At a distance, one sees only circles arranged in circles
arranged in a matrix. Close up (Figure 2), the fine detail gives the actual numbers. Words or numbers might
play a crucial role, especially at the fine scale. Multiple scales are the foundation of Figure 1. The leftmost
bar contains primes as individual numerically-labeled figures; the rightmost bar displays only a light gradient.

The field of data visualization is rapidly progressing, from Tufte’s new foundations [9] to interaction
and animation (e.g., the Javascript package d3.js [1]). The time is ripe for expositors of mathematics to
understand this field and convey their ideas with a mix of text and graphics.
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