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Abstract  
The Sierpinski relatives form a fascinating class of fractals because they all possess the same fractal dimension but 
can have different topologies. The famous Sierpinski gasket is one of these relatives. There is a subclass consisting 
of symmetric relatives that are particularly beautiful. This paper presents an exploration of these relatives. These 
eight relatives are all fractal, however their convex hulls are polygons with at most eight sides. The convex hulls 
provide a way to tile the relatives to obtain other beautiful fractals. The fractals include gasket fractals and fractal 
frieze patterns. 

 
Introduction 

The Sierpinski Gasket is a well-known fractal, see Figure 1(a). It can be expressed as the union of 
three smaller versions of itself that have lengths scaled down by a factor of 2, so it has fractal 
dimension equal to ln 3 / ln 2 ≈ 1.585. The class of fractals known as the Sierpinski relatives all 
possess the same scaling properties and hence the same fractal dimension. However, the topological 
properties of these relatives vary [7]. The gasket is multiply-connected (possesses holes). It is 
possible for a relative to be: completely disconnected (connected components consist of single 
points) as in Figure 1(b); disconnected with straight line segments (infinitely many connected 
components, components may be more than just single points because there are straight line 
segments) as in Figure 1(c); or simply-connected (no holes), as in Figure 1(d). The relatives are 
obtained by using the same scaling as the Sierpinski gasket and the symmetries of the square. Some 
relatives are symmetric about the diagonal from the lower left to upper right. This paper presents 
other fractals generated from these symmetric Sierpinski relatives and their convex hulls. 
 

   
(a)                             (b)                             (c)                            (d) 

Figure 1:  Sierpinski Gasket and three Sierpinski Relatives. 
 

Mathematical Background 
One way to describe the Sierpinski gasket is as the unique attractor of an iterated function system 
(IFS) {𝑔1, 𝑔2, 𝑔3}. Let 𝑆 be the unit square (vertices are (0,0), (1,0), (1,1) and (0,1)). The maps 
𝑔1, 𝑔2, 𝑔3 are contractive similarities (they preserve shape but scale down the size), that act on the 
unit square as in Figure 2. These maps all contract the lengths of the sides of the square by a factor of 
two and they all preserve the orientation of the square. The map 𝑔2 moves the contracted square to 
the right by ½ while the map 𝑔3 moves it up by ½. A relative of the gasket is the attractor of an IFS 
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that consists of three maps that all map the unit square to a square with sides of length ½ and each 
of the maps may involve a symmetry transformation of the square.     

 
Figure 2:  The unit square and result of applying maps g1, g2, g3. 

 

Symmetries of the Square 
There are eight symmetries of the square {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}: 𝑎 (the identity, doesn’t move the 
square); 𝑏 (rotation by 90° counter-clockwise); 𝑐 (rotation by 180° counter-clockwise); 𝑑 (rotation 
by 270° counter-clockwise); 𝑒 (reflection across the horizontal line through the center); 𝑓 (vertical 
reflection); 𝑔 (reflection across diagonal through lower left corner and upper right corner); and ℎ 
(other diagonal reflection). The actions of the symmetries on a “J” placed in the unit square are shown 
in Figure 3.   

 
Figure 3:  Symmetries of the Square. 

 
A Sierpinski relative 𝑅𝑥𝑦𝑧 can obtained from an IFS {𝑓1, 𝑓2, 𝑓3} acting on the unit square 𝑆. The map 𝑓1 
involves contraction and the symmetry 𝑥; the map 𝑓2  involves contraction, the symmetry 𝑦, and 
horizontal translation by ½; the map 𝑓3 involves contraction, the symmetry 𝑧, and vertical translation 
by ½. Note that the contractions are all by a factor of ½, and each map takes the relative to a scaled 
down version of itself. Figure 4 displays the maps to obtain the relative 𝑅𝑎𝑏𝑑. There are 8 choices for 
each symmetry of the square, thus there are 8 × 8 × 8 = 512 possibilities. However, the resulting 
fractals are not all distinct. We will explain why there are 232 distinct Sierpinski relatives.   

 
Figure 4:  Maps to obtain the relative 𝑅𝑎𝑏𝑑. 

 
The Sierpinski gasket corresponds to 𝑅𝑎𝑎𝑎. Observe that the gasket is symmetric about the diagonal 
from the lower left to upper right (this is symmetry 𝑔 of Figure 3). Due to this invariance under the 
map 𝑔, the gasket also corresponds to 𝑅𝑎𝑎𝑔, 𝑅𝑎𝑔𝑎, 𝑅𝑔𝑎𝑎, 𝑅𝑎𝑔𝑔, 𝑅𝑔𝑎𝑔, 𝑅𝑔𝑔𝑎  and 𝑅𝑔𝑔𝑔.  
Figure 5 displays eight relatives that are symmetric about the diagonal from the lower left to upper 
right: 𝑅𝑎𝑎𝑎, 𝑅𝑎𝑏𝑑, 𝑅𝑎𝑐𝑐, 𝑅𝑎𝑑𝑏, 𝑅𝑐𝑎𝑎, 𝑅𝑐𝑏𝑑, 𝑅𝑐𝑐𝑐 and 𝑅𝑐𝑑𝑏. As with the gasket, this invariance under the 
map 𝑔 means that each of the three maps in the IFS has a choice of two possible symmetries (the 
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original from the list or the original composed with 𝑔). Each symmetric relative has 2 × 2 × 2 = 8 
choices for the IFS. For example, these are the choices that yield the same fractal as 𝑅𝑎𝑏𝑑: 

𝑅𝑎𝑏𝑑: 𝑅𝑎𝑏𝑒, 𝑅𝑎𝑓𝑑, 𝑅𝑎𝑓𝑒, 𝑅𝑔𝑏𝑑, 𝑅𝑔𝑏𝑒, 𝑅𝑔𝑓𝑑, 𝑅𝑔𝑓𝑒. 
There are 64 choices that yield symmetric relatives (it can be shown that these are the only 
symmetric relatives [7]). For the 512 − 64 = 448 choices left for the IFS, each choice yields a relative 
that is congruent (via reflection across this diagonal from the lower left to upper right) to exactly one 
other choice. Hence there are 224 distinct fractals. In total, there are 8 symmetric plus 224 non-
symmetric relatives for a total of 232. See [7,6] for more details.  

 
𝑅𝑎𝑎𝑎                                𝑅𝑎𝑏𝑑                             𝑅𝑎𝑐𝑐                               𝑅𝑎𝑑𝑏 

 
                             𝑅𝑐𝑎𝑎                                  𝑅𝑐𝑏𝑑                               𝑅𝑐𝑐𝑐                                     𝑅𝑐𝑑𝑏 

Figure 5:  Eight symmetric Sierpinski relatives. 
 

Convex Hulls 
A set 𝐴 is convex if for any two points 𝑝 and 𝑞 in the set, the line segment 𝑝𝑞̅̅ ̅ joining them is also in 
the set (Figure 6). The convex hull of a set is the smallest convex set that contains the set. One way to 
visualize the convex hull of a set of points is that it includes its boundary which is like an elastic band 
around the points, and it contains everything inside the elastic band. See [2,5] for more details.  

                           
Figure 6:  Convex set and non-convex set; set of points along with boundary of its convex hull. 

Convex hulls of the Sierpinski relatives can be a useful tool to help characterize and classify the 
fractals using topology instead of fractal dimension (work in progress, [8]). In general, the 
determination of the convex hull of IFS fractals can be quite complicated, see [9]. I am still working 
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on a complete description of the convex hulls of the relatives. The symmetric relatives are much 
easier to work with. For some relatives, the boundary of their convex hull has vertices that are not 
on the unit square and this makes the determination more complicated. Figure 7(b) displays one 
such example, 𝑅𝑏𝑑𝑔. Consider the line segment between 2 points of 𝑅𝑏𝑑𝑔 as in Figure 7(b). This line 
segment cannot be a side of the convex hull boundary, hence the convex hull boundary must contain 
vertices that are not on the unit square. 

                        
(a)                                                      (b) 

Figure 7:   𝑅𝑏𝑑𝑔 and line segment joining two points 

 
Convex Hulls of the Symmetric Sierpinski Relatives 

One can show that the symmetric relatives all have convex hulls with polygonal boundaries, where 
the polygons have at most eight sides and have interior angles that are special angles (45°, 90° or 
135°), see Figure 8. Mathematical details are forthcoming [8]. To describe the convex hull it suffices 
to give the vertices of the bounding polygon. These vertices are all on the boundary of the unit square 
𝑆. Note that for a general relative, the convex hull may have a fractal curve boundary or a polygonal 
boundary and in many cases the vertices are not on the unit square. For the symmetric relatives, the 
convex hulls naturally fit together to tile new fractals or frieze patterns.  

  
                            𝑅𝑎𝑎𝑎                                𝑅𝑎𝑏𝑑                                  𝑅𝑎𝑐𝑐                               𝑅𝑎𝑑𝑏 
 

    
 𝑅𝑐𝑎𝑎                                𝑅𝑐𝑏𝑑                             𝑅𝑐𝑐𝑐                             𝑅𝑐𝑑𝑏 

Figure 8:  Boundaries of the convex hulls of the symmetric Sierpinski relatives. 
 
For each symmetric relative, we describe the bounding polygon of their convex hull in terms of the 
vertices and the interior angles. We start with the vertex closest to (0, 0) and with y = 0, and go 
counter-clockwise around the polygon.  The angles are listed in the same order. 
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𝑅𝑎𝑎𝑎 (the Sierpinski Gasket). Vertices: (0, 0), (1, 0), (0, 1). Angles: 90°, 45°, 45°.  
𝑅𝑎𝑏𝑑. Vertices: (0, 0), (1, 0), (1, 1/2), (1/2, 1), (0, 1). Angles: 90°, 90°, 135°, 135°, 90°. 
𝑅𝑎𝑐𝑐. Vertices: (0, 0), (1, 0), (1, 1/2), (1/2, 1), (0, 1). Angles: 90°, 90°, 135°, 135°, 90°. 
𝑅𝑎𝑑𝑏.  Vertices: (0, 0), (2/3, 0), (1, 1/3), (1/3, 1), (0, 2/3). Angles: 90°, 135°, 90°, 90°, 135°. 
𝑅𝑐𝑎𝑎. Vertices: (1/2, 0), (1, 0), (0, 1), (0, 1/2). Angles: 135°, 45°, 45°, 135°.   
𝑅𝑐𝑏𝑑.  Vertices: (2/7, 0), (6/7, 0), (1, 1/7), (1, 3/7), (3/7, 1), (1/7, 1), (0, 6/7), (0, 2/7). All angles are 
135° so there are many ways to tile this octagon. 
𝑅𝑐𝑐𝑐. Vertices: (1/3, 0), (1, 0), (1, 1/3), (1/3, 1), (0, 1). Angles are 135°, 90°, 135°, 135°, 90°, 135°. 
𝑅𝑐𝑑𝑏. Vertices: (1/3, 0), (2/3, 0), (1, 1/3), (1/3, 1), (0, 2/3) and (0, 1/3). Angles: 135°, 135°, 90°, 90°, 
135°, 135°. This is an interesting hexagon because three sides have the same lengths so there are 
many ways to tile the hexagons together. 
 

Fractals Tiled with Sierpinski Relatives 
Here we present a selection fractals created by tiling together copies of one particular symmetric 
relative.  They follow the rule that if the convex hulls of two tiles intersect, they intersect in a line 
segment of the same length. This is not a complete presentation, just a highlight of ones that I liked.  
Many of these fractals are “gasket fractals” (bounded, multiply-connected fractals) as described by 
Fathauer [3]. Many possess the same symmetry properties as the square: Figures 9(a) and (b); 
Figures 10(b) and (c); Figures 11(a), (b) and (c); Figures 12(a) and (c); Figure 13(c).  The fractals in 
Figures 10(a) and 12(b) have four symmetries (the identity, rotation by 180°, horizontal reflection 
and vertical reflection).  The fractals in Figures 13(a) and (b) display a chirality in that they are 
mirror images of each other; each of these fractals has the four rotational symmetries of the square, 
but no reflective symmetries. Note that the fractals are not technically self-similar because they are 
not formed from smaller versions of themselves.   

                  
(a)                                                 (b)      

Figure 9:  Fractals tiled with the Sierpinski gasket 𝑅𝑎𝑎𝑎. 
 

                            
                                 (a)                                              (b)                                              (c) 

Figure 10: (a) and (b) Fractals tiled with 𝑅𝑎𝑏𝑑,  (c) Fractal tiled with 𝑅𝑐𝑐𝑐. 
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                                (a)                                                (b)                                            (c) 

Figure 11:  Gasket fractals using (a) 𝑅𝑎𝑐𝑐 , (b) 𝑅𝑎𝑑𝑏, and (c) 𝑅𝑐𝑎𝑎. 
 

                                       
                          (a)                                                     (b)                                                    (c) 

Figure 12:  Gasket fractals tiled with 𝑅𝑐𝑏𝑑. 
 

                          
                                (a)                                                 (b)                                             (c) 

Figure 13:  Gasket fractals tiled with 𝑅𝑐𝑑𝑏. 
 
 

Frieze Patterns 
The convex hulls can be tiled together to form frieze patterns. A frieze pattern is an infinite strip with a 
repeating pattern [1,4]. All frieze patterns possess translational symmetry. There are seven possible frieze 
patterns that depend on which other symmetries are present. The other possible symmetries are glide 
reflection (GR), vertical reflection (VR), horizontal reflection (HR) and half-turn rotation (HT). Below are 
a selection of examples of fractal frieze patterns formed from symmetric Sierpinski relatives. Figure 14 
possesses HT symmetry. Figures 15 and 18 possess GR, VR and HT symmetries. Figure 16 possesses VR 
symmetry. Figures 17 and 19 possess GR, VR, HR and HT symmetries. Figure 20 possesses GR and HT 
symmetries. 
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Figure 14:  Frieze pattern using 𝑅𝑎𝑎𝑎. 

 

 
Figure 15:  Frieze pattern using 𝑅𝑎𝑎𝑎. 

 

 
Figure 16:  Frieze pattern using 𝑅𝑎𝑏𝑑. 

 

 
Figure 17:  Frieze pattern using 𝑅𝑎𝑑𝑏. 

 

 
Figure 18:  Frieze pattern using 𝑅𝑐𝑎𝑎. 
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Figure 19:  Frieze pattern using 𝑅𝑐𝑎𝑎. 

 

 
Figure 20:  Frieze pattern using 𝑅𝑐𝑐𝑐. 

 
 

Summary and Conclusions 
This paper has presented a way to use the convex hulls of a class of fractals to generate other fractals. 
More work can be done with the Sierpinski relatives by looking at the non-symmetric relatives. This 
technique could be applied to other fractals as well. 
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