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Abstract
We employ tubular bugle beads to construct aesthetically pleasing skeletal polyhedral sculptures which may contain
nodes with connectivity or coordination number up to twelve. These sculptures can also represent physical models of
nanoscale inorganic structures or octet-truss lattice structures. Starting from a few convex deltahedra as fundamental
building units, a wide range of skeletal structures inspired by the nanoscale world can be built by using the standard
angle weave technique.

Introduction

In the past few Bridges conferences, we have presented a series of studies on the constructing bead models
of trivalent graphitic structures and tetravalent extended systems using spherical beads. The trivalent struc-
tures include cage-like fullerenes, carbon nanotori, helically coiled carbon nanotubes, high-genus fullerene,
carbon Schwarzites, and tetravalent structures comprise all kinds of zeolites and clathrate structures.[1, 2, 3]
However, the shape of spherical beads limits their applications mainly to low-connectivity systems and can-
not easily be applied to structures with coordination numbers higher than six. Here, in this paper, we will
explore the application of bugle beads which are tubular in shape to the construction of skeletal polyhedral
structures with coordination numbers up to twelve, which might have potential applications in structural
inorganic chemistry and octet-truss systems.

Structural motifs in all of our bugle bead structures consist of the eight convex deltahedra as shown
in Fig. 1. The beading technique for making a convex deltahedron is the so-called angle weave which we
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Figure 1 : Eight convex deltahedra: tetrahedron (a), trigonal bipyramid (b), octahedron (c), pen-
tagonal bipyramid (d), snub disphenoid (e), tri-augmented triangular prism (f), gyro-elongated
square bipyramid (g), and icosahedron (h).
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previously used to make cage-like fullerenes and other periodic trivalent structures. Using the angle weave,
every beading step corresponds to creating a triangular face with both ends of fishing line. Note that all
bead models discussed in this paper are made by bugle beads with same length equal to 3 cm. The main
difference is that faces in all deltahedra are equilateral triangles, and the degrees of vertices can vary from
three to five. Therefore, surrounding each vertex, one can have as high as five triangles as in the situation of
the icosahedron. If the beading path follows a path that visits each triangular face once and only once, then
each bugle bead will be stringed through by the fishing line twice and only twice. The angle defect of each
vertex is positive and the whole beaded skeletal structure is rigid as shown by eight beaded deltahedra in
Fig. 1. Unlike bead structures based on spherical beads, the stability of a bugle bead structure come from the
rigidity of constituent convex deltahedra due to the Cauchy rigidity theorem. Note that these tubular bead
structures are in fact hollowed-face or skeletal polyhedra with empty face to see through.

Linked deltahedra

Polyhedral structures appear in nature at different length scales, from the molecular level up to everyday ob-
jects. In chemistry, the most useful idealization of molecular structures consists in associating the positions
of atoms to the vertices of a polyhedron. Particularly, tetrahedra and octahedra are two most common struc-
tural motifs in molecular transition metal chemistry and inorganic solids. Other deltahedra are sometimes
important, for instance, the B12 groups in the extended structure of B4C are found to be icosahedra. Many
larger structural units in chemistry can be described by linked deltahedra. For instance, two deltahedra can
be combined to form a dimer by sharing a common vertex, edge, or face.

In Fig. 2a, we show a bead model of two tetrahedra sharing a common vertex. The molecule Cl2O7
is an example which has this idealized structure. The second bugle bead model given in Fig 2b is the so-
called kaleidocycle consisting of a cyclic chain of even number of tetrahedra with two neighboring tetrahedra
sharing a common edge. Because the dihedral angle about this common edge is flexible, the whole skeletal
kaleidocycle can thus be twisted continually inwards or outwards. The bead model of the Boerdijk-Coxeter
helix as shown in Fig. 2c shows the third way of combining two tetrahedra by sharing a common face. We
deliberately use two different colors for the bead model in Fig. 2c so that the tubular beads of the complex
that belong to a single tetrahedron form three intertwined helices.
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Figure 2 : Examples of three different ways of combining tetrahedra: the vertex-sharing tetra-
hedral dimer (a), the skeletal kaleidocycle consisting of a chain of eight edge-sharing tetrahedra
(b), and the left-handed form of the Boerdijk-Coxeter tetrahedra (c).

Octet Truss and Icosahedral Systems

In this section, we show that many three-dimensional space frames can be considered as the stacking of these
structural motifs. The inherent rigidity of deltahedral building motifs ensures their stability. Physical models
given in the first row of Fig. 3 correspond to several octet truss systems based on the stacking of tetrahedra
and octahedra. The word “octet” is derived from “octahedron” and “tetrahedron”.
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The simplest structure of an octet truss is the stella octangula as shown in Fig. 3a, which can be created
by capping or augmenting each face of an octahedral core by a regular tetrahedron. The result of this face
augmentation is a compound formed by two interpenetrated regular tetrahedra with edge length twice of a
bugle bead. If one combines octahedra and tetrahedra in a 1 : 2 ratio, one can get a space filling solid. The
most important structure is face center cubic (FCC) lattice as shown in Fig. 3b. With slight modification on
how close packed sheets are stacked on each other, we get the hexagonal close-packed lattice arrangements
(Fig. 3d). FCC in the crystal packing is closely related to the octet truss in the space frame. The bead model
in Figure 3c is a perovskite structure, which is another type of cubic close packed lattice.
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Figure 3 : Octet-truss lattice structures (upper row): stella octangula (a), face center cubic lat-
tice (b), perovskite (c), hexagonal close packing lattice (d); Structures with icosahedral symmetry
(lower row): icosidodecahedron (e) rhombic hexecontahedron (f, g), frequency-4 Mackay poly-
hedron (h).

In addition to the octet truss systems, bugle beads can also be used to construct icosahedral skeletal
structures as shown in the second row of Fig. 3. The first three sculptures (Figs. 3e, f, g) have similar
architectures: they all contain a central icosahedral core, but different kinds of augmentation of deltahedra.
The model in Fig. 3e has twenty octahedra augmented to the central icosahedron, in such a way that each
octahedron share a common face with the central icosahedron and three neighboring octahedra, and the
outer skeleton of these octahedra forms an icosidodecahedron. The model in Fig. 3f has an extra regular
tetrahedron stacked on top of each octahedron. We chose deliberately the red color for certain beads to
make the pattern of the rhombic hexecontahedron clear. In Fig. 3g, twelve excavated regions along the
five-fold axes are augmented by additional twelve pentagonal bipyramids and the resulting structure has an
extra frequency-2 Mackay polyhedron. The last model in Fig. 3h is also an icosahedral octet-truss structure.
Each of its twenty flat faces comprises a single layer of octet truss and twelve excavated tips are augmented
by pentagonal bipyramids again to form a two-layer Mackay polyhedron. Inner and outer layers stand for
frequency-3 and -4 Mackay polyhedra, respectively.

Polyoxometallates

In this section, we give a final application of bugle beads to polyoxometallates in the structural inorganic
chemistry. Polyoxometallates can be considered as a kind of supramolecular architectures resulting from
the condensation of coordination polyhedra of transition metal atoms through oxygen bridges. Fig. 4 shows
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bugle bead models corresponding to the five isomers of Keggin’s structures. A classical example of these
compounds is ammonium phosphomolybdate which contains the PMo12O

3−
40 anion discovered in 1826.[4]
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Figure 4 : Five isomers of Keggin’s structure: different isomers are obtained by rotating one or
more of the four tri-octahedral units (M3O13 ) through 60◦. Five schematic plots of Keggin’s
structures in the second rows are in public domain and were obtained from wikipedia.

Conclusion

In conclusion, we give a brief description on how tubular beads can be used to construct different kinds of
skeletal polyhedral models that can represent physical models of many inorganic structures and octet-truss
systems. The nodes in these skeletal structures can have connectivity or coordination numbers up to twelve
which is common in many octet-truss lattices. The beading technique we use is the standard right-angle
weave that was previously used for trivalent fullerenes and tetravalent periodic zeolite structures. Since
we only use bugle beads with the same length in this paper, all deltahedral structures constructed in this
paper comprise only four fundamental building motifs. If we use bugle beads with different lengths, a richer
structural variety of skeletal polyhedral sculptures can be built.
Acknowledgement: B.-Y. Jin wishes to thank Dr. Jen-Hui Chang for useful inspiration and Ms. Ying-
Jung Chen for taking the photos.
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