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Abstract
Beginning with their introduction in 1952 by Alan Turing, Turing-like patterns have inspired research in several
different fields. One of these is the field of cellular automata, which have been utilized to create Turing-like patterns
by David A. Young and others. In this paper we provide a generalization of these patterns to the third dimension.
Several visualizations are given to illustrate the created models.

Historical Introduction: Turing’s Chemical Basis Of Morphogenesis

In 1952, the English Mathematician Alan Turing (June 23, 1912 – June 7, 1954) proposed a model of stable
patterns generated by a system of two chemicals, respectively morphogens [10]. The goal was to explain
skin patterns of vertebrates, see Figure 1a. The two chemicals, an activator and an inhibitor, diffuse through
some substrate and react with each other. While the activator is acting in a short radius around the cell and
stimulates the generation of colored pigments, the inhibitor prevents this generation within an annulus of
larger radius around the cell.

Given morphogens X and Y with concentration Xr and Yr in cell r, cell-to-cell diffusion of X called
µ and of Y called ν, increase of X given by f(X,Y ) and increase of Y given by g(X,Y ), Turing proposes
the following reaction-diffusion system:

dXr

dt
= f(Xr, Yr) + µ(Xr+1 − 2Xr +Xr−1),

dYr
dt

= g(Xr, Yr) + ν(Yr+1 − 2Yr + Yr−1), (1)

with r ∈ {1, . . . , N}. Here, the cells are arranged in what Turing calls a ”ring system”.
This model inspired many follow-up papers, even up to very recent research [5]. See also the intro-

duction in [4] for a discussion of the reception of Turing’s model. Finally, Turing-like patterns are a regular
topic at Bridges conferences. Starting with a paper by Jonathan McCabe in 2010 [7], they inspire a seemingly
endless flow of fantastic ideas and artworks, see e.g. [4, 9, 11].

Continuing The Story: Young’s Vertebrate Skin Patterns

In his 1984 paper ”Vertrebrate Skin Patterns” [13], David A. Young builds on the idea of Turing and some
extensions by Swindale. He considers the generalized diffusion equation (cf. to Turing’s formula (1)):

∂M

∂t
= ∇ · (D · ∇M)−KM +Q, (2)

where M = M(r, t) is the morphogen (either inhibitor or activator) concentration and the other terms
describe diffusion, chemical transformation, and production of the respective morphogen. Every activated
cell produces the two morphogens which then diffuse away from the cell, following (2).
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(a) Turing pattern as given in Tur-
ing’s own publication [10].

(b) Turing-like pattern as given in
Young’s publication [13] with de-
creasing inhibitor from left to right.

(c) 100 × 100 × 100 three-
dimensional pattern, ρ = 0.5,
ri = 15, ro = 19, 10th iteration.

Figure 1: First patterns by Turing and Young, next to a three-dimensional pattern.

The process is now discretized as a cellular automaton (CA). See e.g. [12] on the topic of CA and
confer with the famous ”Game of Life” by John Conway as presented e.g. by Martin Gardner [3]. Initially,
each cell is randomly activated with some probability ρ ∈ [0, 1]. Young proposes two different kernels for
the reaction-diffusion step. The first kernel is circular, while the second kernel has elliptical shape.

We will only discuss the circular kernel here. It is determined by two radii ri and ro. The first radius
determines an inner, the second an outer circle. During one step of the simulation, all activated cells within
the inner circle are counted. They contribute a weight of +1 to the currently considered cell. Furthermore,
all activated cells lying in the outer, but not in the inner circle, are counted. They contribute a weight of
−1. If the overall weight for the current cell is larger than 0, the cell becomes active in the next iteration.
Otherwise, it becomes inactive.

In the two-dimensional case, the status st+1(C) of a given cell C = (x, y) at time t + 1 is therefore
computed from the weights of its active neighboring cells Ci = (xi, yi) at time t by

st+1(C) =

{
1

∑
i ωt(Ci) > 0

0
∑

i ωt(Ci) ≤ 0
, where ωt(Ci) =


0 (x− xi)2 + (y − yi)2 > r2o
1 (x− xi)2 + (y − yi)2 ≤ r2i
−1 otherwise

. (3)

Note that in Young’s original paper, equation (3) is given differently, as ω takes values 1, k, 0 on the
inner disk, its annulus and the outside cells respectively, with k a negative constant.

Generalization To 3D: Volumetric Patterns

In this section we will present our generalization of Young’s model to the third dimension. The main idea is to
add a term (z− zi)2 in the right hand side of equation (3). Similar patterns have appeared in medical context
[1], when studying reaction-diffusion systems there. They also arose when studying nonlinear phenomena
in a physical context [6]. In contrast to these applied works, we focus on an efficient generation of these
patterns, providing a variety of different initial conditions. All images shown are created with an approach
of CA implementations given by [2] and are therefore highly efficient. As in two dimensions, a stable pattern
emerges after a very low number of iterations (10-15). The models are visualized in the JavaView framework
[8]. Different steps in the iterative process of the generation of our three-dimensional Turing-like patterns is
shown in Figure 2. The variation of parameters ri and ro is shown in Figure 3.

Skrodzki and Polthier

416



(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 10

Figure 2: Iterations of a 50× 50× 50 cell model with ρ = 0.5, ri = 8, ro = 10.

In the two-dimensional patterns of Figure 1a, 1b, activated cells are colored black, while non-active
cells are white. For the visualization of three-dimensional patterns, we chose a different approach. The
images show only the boundary between active and non-active cells. It is visualized via the Marching Cubes
algorithm, therefore the images look jagged. The darker teal indicates that this side of the boundary has
activated cells, while the lighter gray side has non-active cells. For colored versions of the images, we refer
the reader to the electronic version of this article. Furthermore, in the two-dimensional patterns, opposing
sides of the CA are identified to form a torus on which the simulation is run. The same is performed in 3D,
where we identify the opposing sides of a cube to create the images on a three-torus.

Note how in Figure 1b, with varying parameters, the pattern performs a phase transition from discon-
nected points (”zero-dimensional”) to connected stripes (”one-dimensional”). A similar behavior is exhibited
by three-dimensional patterns, as shown in Figure 4. One would expect that in three-dimensional patterns
also ”two-dimensional” connections occur. However, we have not been able to come up with a parameter-set
creating these. Hence, they are left for further research.

(a) ri = 4, ro = 5 (b) ri = 8, ro = 10 (c) ri = 12, ro = 15

Figure 3: The respective 10th iteration of three 100×100×100 cell models with ρ = 0.5 and varying ri and
ro parameters. Note the decreasing complexity and also compare to the ri = 15, ro = 19 model in Figure
1c.
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(a) A 100× 100× 100 model exhibiting dis-
connected points. ρ = 0.9999, ri = 4, ro = 7,
10th iteration.

(b) A 100× 100× 100 model exhibiting one-
dimensional connection. ρ = 0.5, ri = 8, ro = 10,
10th iteration.

Figure 4: Different connectivities in three-dimensional patterns. Both models have undergone Laplacian
Smoothing with fixed boundary to reduce the jagged artifacts of the Marching Cube Algorithm and thus
make them aesthetically more pleasant. Note the very high value of ρ in the left pattern, which is due to
increased dimension.
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