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Abstract 

 
We report on the generation of a specific type of pied-de-poule pattern (houndstooth) using a dedicated cellular 
automaton. The generator is a one-dimensional automaton such that the development features a so-called 
puppytooth pattern. In order to make this possible we had to introduce a system of five colors. The desired pattern 
appears as a contrast of darker and lighter colors, resembling the traditional black and white pattern. It is possible to 
extend the automaton, which offers a rich playground for various types of semi-random, yet pied-de-poule like 
behaviors. The pattern was used to weave fabric; we show the fabric and several realized garments.  
 

 
Introduction 

 
Pied-de-poule (houndstooth) denotes a family of patterns. The French Pied de poule means “foot of hen”. 
We refer to Feijs’ contribution to Bridges 2012 [1] and Abdalla Ahmed’s work on weaving design [2] for 
an overview of earlier work on the computerized creation of pied-de-poule patterns. The patterns can be 
viewed as the outcome of a simple algorithm, but also as tessellations. The simplest pattern of the family 
is called puppytooth, see Figure 1. At present we are interested in cellular automata [3,4] and we want to 
generate fashionable patterns using simple rules, starting with puppytooth. 
 

 
Figure 1: Puppy-tooth pattern (left) with basic figure in windmill-Gestalt (next), basic figure in pied-de-

poule interpretation (next) and example of more complicated pied-de-poule basic figure (right). 
 

Designing an Automaton for Puppytooth 

The initial idea was to design a two-dimensional automaton such that at each point in time there is a two-
dimensional grid, which resembles a pied-de-poule pattern in some areas and which evolves to locally 
resemble such pattern. We found rules that would sustain a given pied-de-poule pattern and we managed 
to add rules with a limited error-correction capability. But growing fresh pied-de-poule patterns from 
random seeds was harder. Then we switched to one-dimensional automata. The geometric definitions of 
pied-de-poule patterns are well-known [1]. We coded one such pattern in Mathematica and wrote a 
program to extract an automaton rules automatically. In a one-dimensional cellular automaton, the new 
state value is obtained by a rule from the previous-row neighbor states. A cell’s environment is defined by 
its radius r such that r = 1 means that each environment has 3 cells. In general for r > 1 each 
environments has 2r + 1 adjacent cells. At each point in time, t = 1, 2, 3, ··· each cell has a value (a state). 
The state can assume a set Q of k distinct values. We need a rule, which is a recipe telling how a cell is 
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updated as a function of its environment, so for environments of three cells (r = 1 and k = 2), the rule 
should describe 8 cases. One such case could be (tuple) {0,0,0} → 0, which we call a maplet.  In general, 
a complete rule has k2r+1 maplets. The automaton develops in time, and time is depicted in the vertical 
axis.  

 
 

Figure 2: Hypothesized development for t = 1,2,3,4 of puppy-tooth pattern on a one-dimensional grid of 
16 cells. There is a difficulty for a formal rule to produce the pattern if we would adopt two states only. 

 
From Figure 2,  it can be seen that no rule can perform well in making the puppytooth pattern at t = 1 and 
t = 2 since at t = 1 there is a need for {1,0,1} →  1 whereas at t = 2 it should be {1,0,1} → 0. Similar 
situations arise for {0,0,0} for example. State 0 is plotted white, 1 as black. In fact, the problem persists if 
the environments are chosen larger, since t = 1 and t = 2 are the same row of states, except for a 
horizontal shift (and similarly for t = 3 and t = 4). The problem persists for any natural number r. The 
proposed approach is to use k = 5 states. There is one quiescent state, serving as the blank space where no 
puppy-tooth pattern (or anything else) has developed yet. Its color is pure white. Moreover two extra 
kinds of white and two kinds of black are introduced in order to distinguish consecutive rows inside the 
puppytooth pattern at (preventing the problem of Figure 1). White and black are the colors par-excellence 
for pied-de-poule and thus also puppytooth in fashion. Therefore we adopt two light colors (called pinky 
and greeny) and two dark colors (dark-red and dark-green). The forgetful mapping F(dark-red) = F(dark-
green) = black and F(pinky ) = F(greeny) = white should give the classic black-and-white puppy-tooth 
pattern. We say pinky and dark-red are red-like, greeny and dark-green are green-like. 
 
The coding is: quiescent = 0, pinky = −1, greeny = −2, dark-red = 1, dark-green = 2. In other words, 
negative values are kinds of black, strictly positive values are kinds of white.  The plan is to design an 
automaton such that it can evolve into (regions of) puppy-tooth pattern, in which red-like and green-like 
rows alternate.  
 

 
 

Figure 3: First 12 rows of a puppy-tooth pattern development (left) and 9 maplets which are  
sufficient for development of the first two rows (t =2 and t = 3) from the initial row (t = 1). 

 

Figure 3 shows how a rule of 9 maplets could produce two more rows from an initial grid with a single 
dark-red cell. Formally we let r = 1, k = 5, Q = {−2, −1,0,1,2} (as a set)  and then the 9 maplets are {0, 0, 
0}  → 0, {0, 0, 1} → 2, {0, 1, 0} → −2, {1, 0, 0} → 2, {0, 0, 2} → −1, {0, 2, −2} → −1, {2, −2,2} → −1, 
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{−2, 2, 0} → 1,  {2, 0, 0} → −1. Continuing the development of Figure 3 we find that it takes 35 maplets 
to complete the emerging triangle (which begins with a single cell in state 1, a dark-red state). Of these 
maplets, 19 take care for growth at the edge of the blank areas (for example {0, 0, 1} → 2) and 16 other 
maplets sustain the development from existing pied-de-poule patterns (for example {2, −2, 2} → −1, in 
which no 0 occurs). As a complete rule must have k2r+1=53 = 125 maplets; therefore we have considerable 
freedom what to do with the remaining 125−35 = 90 maplets. As a default rule we map everything else to 
the quiescent state,  { _, _, _ } →  0, which is shorthand for the 90 maplets (everything else maps to 0). 
The grid is organized circularly: the boundary is wrapped around left-to-right. Instead of extending the 
states, it would be possible to let the state of the cell in the following generation depend on the state of its 
environment in this and the previous time step; but we adopted the 5-state color solution which gives 
certain aesthetic effects. 

Implementation 
 
The cellular automaton is programmed in Mathematica 10.4 at Eindhoven University of Technology. The 
fabric is woven at EE-labels in the Netherlands. EE stands for Van Engelen & Evers. The family business 
has been weaving quality products since 1900 in the village Heeze in North-Brabant. Van Engelen & 
Evers started making beautiful ribbons for saris and traditional/national costumes. Now EE supplies 
woven labels and other products of the very best quality to a wide range of leading global brands, see 
www.eelabels.com. The garments are designed and realized in the studio of by-wire.net in Utrecht.  

 

 
 

Figure 4: Weaving the cellular-automaton generated puppy-tooth patterns with semi-random effects. 

 
Conclusions and Outlook 

 
We found that it is possible to extend the automaton, which offers a rich playground for various types of 
semi-random, yet puppytooth-like behaviors. The semi-randomness can be seen in Figures 4 and 5. There 
is already emerging semi-randomness from the inherent basic puppytoooth rule.  Moreover, we obtain 
variation in final patterns (and more semi-randomness) by the added random mutations. We believe that 
“emergent complexity” will be an important topic in society, in fashion and in industrial design.  
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Figure 5: Two of the realized garments worn by Prof. S.M. Verduyn Lunel and Prof. J.C.M. Baeten. 
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