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Abstract 
 

Scales constructed from pure harmonic ratios often contain enharmonic note pairs that do not sound in tune 
when played together.  We examine the mathematics behind equal tempered scales that avoid this problem 
by insisting that the harmonic ratios between any pair of successive notes be identical. The mathematical 
problem is to construct equal tempered scales that do a good job of approximating the notes of scales built 
from pure harmonic ratios. Particular old and new solutions to these problems are discussed herein. 

 
Introduction 

A musical note is, roughly, any sound with a well-defined pitch. In practice, musical notes are complex 
collections of many different frequencies.  However, typically a single frequency emerges as dominant. 
Human ears seem to seek out a dominant pitch, even when one is not there.  Additional frequencies then 
add character or "color" to the note.  Indeed, in practice, a pure pitch has a flat one-dimensional sound.  In 
the discussion that follows, we focus only on the dominant pitch of each note.  

The set of notes used in a melody forms the scale (or scales) out of which that melody is built. Our 
concern is with notes in a relative sense.  In particular, we dispense with talking about absolute pitch, the 
specific frequency of vibration, and instead focus on relative pitch, the ratio between the frequencies of a 
pair of vibrating objects. For example, for many a standard A has a frequency of 440 Hz.  Doubling the 
frequency to 880 Hz produces another A, as to western ears these two frequencies represent the same 
note.  These two pitches have a relative ratio of 2/1. More generally, relative pitches, or intervals as they 
are called in music theory, are the ratios between the frequencies, and are naturally enough in 1-to-1 
correspondence with the positive real numbers.  Historically, attention has been paid to whether intervals 
are integral, rational or irrational, with the rational intervals occurring most naturally in scales, each of 
which are associated to a specific root note of the scale called its key.  Harmonicas and bagpipes are 
examples of instruments that only have enough notes to play in one or two keys.  Indeed, concertinas and 
accordions can be thought of as several harmonicas “in parallel” achieving the ability to play in a wider 
variety of keys by supplying new notes. 

The most common approach to scale construction is to fix the notes obtained via the doubling of 
frequency and fill in some number of intermediate notes. For example, in the standard western tradition 
the doubling of frequencies is an “octave”, i.e., the scale is a heptatonic one with seven notes, the familiar 
do, re, mi, fa, sol, la, ti, returning to do.  Though many of our examined scales will have fewer or more 
notes, we will as in common musical practice refer to the doubled frequency note as the octave of a given 
root.  In western music we commonly use pentatonic and onatonic scales, i.e., the familiar blues scale and 
the 12 frets or keys to an octave found in guitars, banjos, mandolins, ukuleles, and pianos.  This latter 
system allows the formation of “half steps” which then allow us to play the various sharps and flats 
required for scales in different keys.  However, as we shall see, adding these extra notes raises 
surprisingly complex and subtle challenges. The general mathematical problem underlying these 
considerations is to describe the construction of a scale containing each of a given list of intervals or 
reasonable approximations of them. 

Pythagorean and Just Tunings 

One particularly simple answer to this question is commonly attributed to the Pythagorean School, but 
was also used throughout Europe into the sixteenth century [1].  Pythagorean scales are generated by a 
single pure interval. The simplest non-trivial harmonic ratios are 3/2 (the perfect fifth) and 2/3, which 
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normalizes (i.e., scaled by the appropriate power of two to lie in the “fundamental” octave of intervals 
between 1 and 2) to 4/3 (the perfect fourth).  As intervals, these ratios are closely related.  Move up from 
the root by 3/2 and then by 4/3 and the note reached is 2/1, or one octave. 

Starting with a root, moving up two perfect fifths produces a note that normalizes to 9/8 from the 
root.  This observation gives us one way to construct a sequence of notes from pure ratios.  In general, the 
ratio of the nth note of this sequence from the root note has a simple formula involving log2(3).  In this 
process, the normalized octave is noticeably sharp. Its normalized value is s approximately 1.0136. This 
ratio, now known as the Pythagorean Comma, presents a serious challenge for the Pythagorean system.  
Insisting that each new note be related by a perfect fifth to some previous note in our scale does not 
ensure that arbitrary pairs of notes have any kind of nice harmonic relationship.  It also fails to ever 
generate a perfect octave.  One historical solution to this problem was to temper the Pythagorean scale by 
flattening the twelfth ratio into a perfect octave.  In general, a temperament or tempered scale is any scale 
that results from adjusting the intervals of some other scale. 

One benefit of the Pythagorean method in general is that it allows us to iteratively refine the scale if 
desired.  For example, as a way to better codify the music of his day [1], the great 13th century Persian 
musician Safi al-Din al-Urmaw used a similar technique to construct a 16 note scale, specifically, a scale 
that begins at B and increases by perfect fourths (i.e., a factor of 4/3) at each stage: 

B, E, A, D, G, C, F, Bb, Eb, Ab, Db, Gb, Bbb, Ebb , Dbb , Gbb. 

These types of Pythagorean scales are not just of historical interest, but are in fact employed by 
contemporary American musicians such as Mavis Staples and David Lindley, working initially by ear and 
heavily influenced by their experience with fretless instruments and the human voice, who incorporate 
these scales into their instruments and performances.   For comparison, Figure 1 contains images of a 
standardly fretted “diddley bow” belonging to one of the authors and a uniquely fretted lute belonging to 
Mr. Lindley and used in his performances.   

 
 

 

 
 

 
 

Figure 1:  Standard and “non-standard” scale patterns 
 

 

Bleiler and Kummel

572



 

 

Fretted western stringed instruments standardly contain 12 frets per octave.  In Figure 1, we see the 
octave marked by a pair of inlayed dots in each image.  On the left, we see the standard 12 frets per 
octave.  On the right, there are 18 frets in the first octave, six additional frets have been added to a 
standardly fretted lute, to yield a modified Persian scale.   

 “Just” scales are constructed analogously to Pythagorean ones, but use more pure intervals as 
generators [1]. Here we obtain a multi dimensional lattice of notes related by pure intervals. For example, 
we can build a system that includes the perfect fifth 3/2 and perfect major third interval 5/4. We carry out 
the same construction as in the Pythagorean case, but now we get a two-dimensional lattice structure. This 
extra complexity has a big benefit.  For example, in such a scale it is possible to play 3 note chords in 
which each pair of notes is related by a pure harmonic ratio. On the other hand, the problem of the 
Pythagorean comma is also amplified in such a tuning system, and so such systems require more 
tempering.  

Equal Temperament 
Looking at the Just and Pythagorean scales constructed above, it is evident that their notes are unevenly 
distributed across the octave.  This has a profound consequence that we have yet to address.  In the above 
examples, all of our scales were built with reference to a root note.  This is because otherwise we would 
be normalizing our sequence of fifths with respect to a different interval.  Thus, to play a melodic figure 
using A as the root note and then to repeat that melodic figure using B as the root note, we would need 
two separate scales.  This is evident when comparing the ratios of the first to the fifth and second to the 
sixth in any given key of the Pythagorean and Just scales. The two ratios should be equal (indeed, 3/2) but 
are not. In a single piece of music, moving from one root note (called a key center) to another is called 
modulation.  As classical composers began exploring modulation, it became increasingly practical to 
simplify the bewildering number of notes available.  This led many composers to conclude that the 
intervals of the scale ought to be identical no matter which octave or key they are reduced relative to. 

To accomplish this equalization, each pair of sequential notes in the scale must have the same ratio as 
any other.  This leaves only one possibility for scales with n notes, ratios of precisely 21/n, the so-called n-
ET scale.  Thus for a twelve note scale that can support modulation, the intervals between successive 
notes must equal 21/12. Since this number is irrational, we never achieve the kind of pure intervals sought 
after in the Pythagorean and Just systems.  On the other hand, certain equal tempered scales approximate 
these other scales reasonably well.  For example, in the 12-ET, the fifth note of the major scale has a ratio 
to the root of 27/12, an interval of about 1.498, a fairly close approximation to 3/2.  This brings up a natural 
goodness of fit question, i.e., precisely how well does a division of the octave into n equally spaced notes 
approximates a given set of Just intervals ?  A useful goodness of fit measure also has weights assigned to 
each target ratio reflecting the relative importance of the notes represented, e.g. a perfect fifth might be 
assigned a weight of 10 and the minor third assigned a weight of 4.  This requirement mimics the 
historical considerations of past practitioners, who labored mightily to produce the requisite numerical 
data. 

The goodness of fit issue explains why 12 is a particularly good choice for the number of notes in an 
octave [2].  As per [3], one can approximate the irrational Log2(3) via an additive continued fraction of 
form [1;1,1,2,2,3,1,5, ...].  Stopping after four layers we get the value of 19/12 as a rational 
approximation, saying that 219/12 is approximately 3 and hence that 27/12 closely approximates 3/2, our 
perfect fifth, as we saw above.  One checks that the perfect fourth and the major and minor thirds are 
similarly well approximated.  An exception here is the seventh note, which is somewhat sharp.  This 
sharpness induces “tension” in the seventh chord and is one reason why seventh chords appear so 
frequently in traditional blues.  For other “well fitting” ETs, we can go another layer down the continued 
fraction to get an even better approximation of 65/41, suggesting an equal tempered scale of 41 notes, the 
24th of which would be very close to a perfect fifth. Indeed, on the internet one can easily find 
contemporary music written and performed in the 41-ET and its extension, the 205-ET employed in the 
Tonal Plexus.  Historically, various features of the goodness of fit of the 53-ET to various Just and 
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Pythagorean scales appears in the work of Ching Fang (78–37 BC), Nicholas Mercator (c. 1620–1687) 
and even in unpublished work of Isaac Newton [4]. 

To use today’s computational technology to explore these issues, the authors produced a JAVA applet 
[5] to produce the numerical data necessary to the investigation of equal tempered scales and their 
goodness of fit to various Just and Pythagorean scales. Using such the authors were easily able to 
rediscover the 31, 41, 43, and 53-ETs familiar to music theorists, and to uncover previously unobserved 
“well fitting” 65 and 125-ETs, the 65-ET having particularly well fitting sixth and seventh notes to a Just 
12 note scale when compared to the 12-ET, as shown in Figure 2.  Of course, the more notes included in a 
given scale, the more complex that scale is to work with.  For this reason, concerns about instrument 
design also play a big role in the ultimate utility of a scale.   
 

 
Figure 2: Comparing the goodness of fit for the 12- and 65-ET scales 

 
Our investigations indicate that the mathematics behind scale construction is surprisingly rich and 

may hold a clue as to why, even today, scale construction is an active area of research among music 
theorists. Modern electronic keyboards can be programmed to simulate any tuning system imaginable.  Of 
course, most music in the West remains firmly rooted in the versatile and ubiquitous 12-ET.  Nonetheless, 
there is plenty of evidence, ranging from the work of contemporary classical composers and that of pop 
and folk musicians, that western musical traditions are not always faithfully represented in the 12-ET and 
that the scales and intonations of the other ETs and of the Pythagorean and Just scale traditions continue 
to have important roles in Western music.  
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