
Lights Out Animations

Robert Bosch
Oberlin College

rbosch@oberlin.edu

Abstract
Given two grayscale target images, we produce two configurations of a Lights Out game board, each accessible from
the all-on configuration and each closely resembling its target image. We then find a collection of cells that when
clicked (in any order) will produce an animation that transforms the first configuration into the second.

Introduction

In a previous life, before I began my investigations into how mathematical optimization techniques can be
used to design visual artwork, I wrote the Mind Sharpener puzzle column for Optima, the newsletter of what
was then called the Mathematical Programming Society and is now called the Mathematical Optimization
Society. Inspired by the work of Martin Chlond [2], I devoted one installment of my column to integer pro-
gramming (IP) models for solving variants of the Lights Out puzzle [1]. Lights Out is a handheld electronic
solitaire game that was manufactured by Tiger Electronics. The player’s task is to turn off all 25 lights that
make up a 5 × 5 grid of cells. Clicking on a cell activates a toggle switch that causes the state of the cell to
change from on to off or from off to on. The complication is that clicking a cell also activates toggle switches
for the cell’s orthogonal neighbors—the cells immediately above it, below it, to its left, and to its right. To
turn off all the lights, the player must determine which cells to click. Clicking a cell more than once isn’t
necessary, and the order in which clicked cells are clicked doesn’t matter. The challenge is to turn the lights
off with as few clicks as possible. An optimal solution to the 5× 5 Lights Out puzzle is shown in Figure 1.

Figure 1: An optimal solution to the 5× 5 Lights Out puzzle.

In the present paper, we describe how IP models can be used to design Lights Out animations. We begin
by reviewing the basic Lights Out IP model and showing how it can be used to (1) determine whether a
black-and-white target image B, when interpreted as a Lights Out configuration, is accessible from the all-
on configuration, and (2) if it is accessible, determine which cells should be clicked in order to produce the
image with the least number of clicks. We then show how to modify the IP in order to produce an accessible
configuration that most closely resembles an nonaccessible black-and-white image B. We conclude by
describing how to modify the IP in order to design a Lights Out animation that resembles one black-and-
white target image in its first frame and a second black-and-white target image on its final frame.

Bridges Finland Conference Proceedings

391

The Image

We assume that our target image is an m × n black-and-white image B. We let bi,j ∈ {0, 1} denote the
row-i-column-i entry of B, the brightness value of pixel (i, j). If bi,j = 0, then pixel (i, j) is black. If
bi,j = 1, then pixel (i, j) is white.

If we want to work with a grayscale target image, we can use downsampling and Floyd-Steinberg dither-
ing to convert into a black-and-white target image.

The Basic IP Model

Here we consider two related problems. First, we want to be able to determine if B is accessible from the
all-on configuration. Second, if it is accessible, we want to determine how to produce it with the least number
of clicks.

If we click cell (i, j), cell (i, j) changes state and so does its orthogonal neighbors. We let C(i, j) stand
for the set of cells that change state when we click cell (i, j). Note that if cell (i, j) is an interior cell, then

C(i, j) = {(i−1, j), (i, j−1), (i, j), (i, j+1), (i+1, j)},

so |C(i, j)| = 5. If cell (i, j) is an edge cell, then |C(i, j)| = 4. If cell (i, j) is a corner cell, then
|C(i, j)| = 3.

But which cells should we click? The basic IP model has a variable xi,j for each cell (i, j). The variable
xi,j equals 1 if we click on cell (i, j) and 0 if we do not. To reduce the “notational clutter” in our model, we
define x(C(i, j)) to be the sum of all variables xi′,j′ for which (i′, j′) ∈ C(i, j). Note that if cell (i, j) is an
interior cell, then

x(C(i, j)) = xi−1,j + xi,j−1 + xi,j + xi,j+1 + xi+1,j .

We refer to x(C(i, j)) as the change count for cell (i, j), as it counts the number of times that cell (i, j)
changes state.

Because we are starting from the all-on (all white) configuration, we want cell (i, j) to change state an
even number of times when bi,j = 1 (when pixel (i, j) of B is white) and an odd number of times when
bi,j = 0 (when pixel (i, j) of B is black). This means that we want to find an assignment of 0s and 1s to the
the xi,j variables that satisfies

x(C(i, j)) ≡ 1− bi,j (mod 2),

or equivalently,
x(C(i, j)) = 2yi,j + 1− bi,j for some yi,j ∈ {0, 1, 2}.

Consequently, to determine if B is accessible from the all-on configuration—and to find the least number
of clicks required to produce it if it is accessible—we can solve the following integer program:

minimize
m∑
i=1

n∑
j=1

xi,j

subject to x(C(i, j)) = 2yi,j + 1− bi,j for all (i, j)

xi,j ∈ {0, 1} for all (i, j)

yi,j ∈ {0, 1, 2} for all (i, j).

Bosch

392

An IP Model for Inaccessible Images

What if B is not accessible from the all-on configuration? If B is inaccessible, the basic IP model will be
infeasible. If this is the case, we would like to determine which cells to click in order to produce an accessible
configuration that most closely resembles B.

One way to do this is to introduce additional variables zi,j into the basic IP model:

minimize
m∑
i=1

n∑
j=1

zi,j

subject to x(C(i, j)) = 2yi,j + zi,j for all (i, j) such that bi,j = 1

x(C(i, j)) = 2yi,j + 1− zi,j for all (i, j) such that bi,j = 0

xi,j ∈ {0, 1} for all (i, j)

yi,j ∈ {0, 1, 2} for all (i, j)

zi,j ∈ {0, 1} for all (i, j).

Note that we have split the change count constraints into two groups. The first group is for the white pixels,
those with bi,j = 1. Because we are starting from the all-on configuration, we want the change counts for
the white pixels to be even. If this is possible, each white pixel’s zi,j will equal 0. If it isn’t possible to make
a white pixel (i, j)’s change count even, its zi,j will equal 1.

The second group is for the black pixels, those with bi,j = 0, and similar reasoning applies. Because we
are starting from the all-on configuration, we want the change counts for the black pixels to be odd. If this
is possible, each black pixel’s zi,j will equal 0. If it isn’t possible to make a black pixel (i, j)’s change count
odd, its zi,j will be 1.

Accordingly, we can think of the zi,j variables as flags that identify errors. A zi,j variable equals 1 when
its pixel is the wrong color. By minimizing the sum of the zi,j variables, we are minimizing the number of
errors.

Computational Experience

We have not performed extensive tests of the models. At the moment, it appears that basic IP model works
well (i.e., solves quickly) on small-to-moderate instances (up 20 × 20) associated with accessible images.
If B is larger and is accessible from the all-on configuration, the basic IP model can take a disappointingly
long time to detect accessibility, and it can take much longer to obtain an optimal set of cells to be clicked. If
B is inaccessible, the basic IP model can take a substantial amount of time to conclude that it is inaccessible.

The modified IP produces low-quality (high-error) solutions quickly and often takes a considerable
amount of time to produce high-quality (low-error) solutions. Fortunately, it is easy to design heuristics
that produce high-quality solutions. The idea is to start with the black-and-white image and try to reach the
all-on configuration. It is easy to see that all the errors can be pushed to the bottom row (or to the top row, or
to the right column, or to the left column). The low-error solution can be used as an initial solution for the IP
solver. Usually the IP solver will be able to improve upon the initial solution (often cutting the error in half)
within a minute or two of computation.

Animations

We now describe how to design a Lights Out animation that resembles one black-and-white target image
in its first frame and a second black-and-white target image on its final frame. We begin by employing the

Lights Out Animations

393

modified IP twice. The first time, we use it to find an accessible configuration that closely resembles the first
target image. The second time, we use it to find an accessible configuration that closely resembles the second
target image. Because both configurables are accessible from the all-on configuration, they are accessible
from each other.

To design the animation, we apply the basic IP model to the configuration formed by taking the exclusive-
or of the two accessible configurations. We form an initial solution by taking the exclusive-or of the two
solutions’s xi,j values. An example animation is shown in Figure 2. The top left shows the first frame. The
top right and bottom left are the 200th and 400th frames, respectively. The bottom left is the final frame.

Figure 2: “From Light to Dark” (four frames of a Lights Out animation). c©Robert Bosch, 2016.

References

1. Bosch, R.A., 2000. Lights Out. Optima (Newsletter of the Mathematical Programming Society), 64,
p. 15. Available online at mathopt.org/Optima-Issues/optima64.pdf.

2. Martin J. Chlond and Toase, C.M., 2002. IP modeling of chessboard placements and related puzzles.
INFORMS Transactions on Education 2(2), pp. 1-11.

Bosch

394

