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Abstract
We propose Möbius transformations as the natural rotation and scaling tools for editing spherical images. As an
application we produce spherical Droste images. We obtain other self-similar visual effects using rational functions,
elliptic functions, and Schwarz-Christoffel maps.

Introduction

Interest in spherical imagery has grown in recent years, driven by increased availability of both viewing
devices and cameras. The YouTube application on smartphones now plays spherical video, using the phone’s
accelerometer. On the camera side, numerous consumer-focused spherical cameras are available, as well as
high-end professional offerings.

Figure 1: Stereographic projection from
the sphere to the plane.

Almost universally, spherical images and video are stored
and transmitted via equirectangular projection1: points on
the sphere are given by their latitude and longitude. Thus
the whole image is stored as a rectangular image with a
two-to-one aspect ratio, corresponding to angles (0,2π)×
(−π/2,π/2). This data format fits conveniently into the ex-
isting infrastructure for ordinary images. However, there is a
problem: most tools for editing ordinary rectangular images,
when applied to the equirectangular projection, give poor re-
sults. For example, standard rectangular editing tools cannot
rotate a spherical image about a non-vertical axis.

Future editing tools for spherical images will no doubt
include the ability to rotate images around any axis, giv-
ing analogues of both translation and rotation of flat images.
However, we can also ask what scaling (in video, zooming)
might mean for spherical images. In this paper, we first recall
how Möbius transformations naturally rotate and scale the
sphere. We then use these to produce spherical Droste images.
We also obtain other interesting visual effects using rational
functions, elliptic functions, and Schwarz-Christoffel maps.
Acknowledgements: The second author was inspired by a
paper of Sébastien Pérez-Duarte and David Swart [10]. See also [4]. He began work whilst visiting eleVR
(a research group consisting of Emily Eifler, Vi Hart and Andrea Hawksley) and wrote a guest blog post2

explaining the implementation of Möbius transformations. The Python code used to generate many of these
images is available at GitHub3. All spherical photographs and videos were taken using a Ricoh Theta S.

This work is in the public domain.
1The equirectangular images in this paper can be viewed spherically at https://flic.kr/s/aHskzi6ADu.
2http://elevr.com/spherical-video-editing-effects-with-mobius-transformations/
3https://github.com/henryseg/spherical image editing
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Möbius Transformations

Möbius transformations act on the Riemann sphere, Ĉ= C∪{∞}. This is the result of adding a single point,
∞, to the complex plane C. We map from the unit sphere S2 in R3 to the Riemann sphere using stereographic
projection [8, page 57]:

ρ(u,v,w) =
u+ iv
1−w

We set ρ(0,0,1) = ∞. Every other point of the unit sphere maps to a point of C. Figure 1 shows a 3D
printed visualisation of stereographic projection. A Möbius transformation M = (a,b;c,d) is the map from
the Riemann sphere to itself given by

M(z) =
az+b
cz+d

, where a,b,c,d ∈ C and ad−bc 6= 0.

There are various special cases involving the point at infinity. If cz+ d = 0 then M(z) = ∞. If c 6= 0 then
M(∞) = a/c. If c = 0 then M(∞) = ∞. There is a cleaner definition, avoiding these special cases, which uses
the one-dimensional complex projective space CP1 which we use in our implementation. Here, to simplify
the exposition, we use Ĉ.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: A test pattern (a and e), and the results of rotating by π/8 (b and f), scaling by a factor of two (c and
g) and applying the parabolic translation M(z) = z+ 1/2 (d and h). Above: the textures on the sphere. Below:
their equirectangular projections. Note that we generally view a spherical image from inside the sphere. From this
perspective the equirectangular projections have the same orientation as the textures on the spheres.

We can rotate the complex plane about 0 by multiplying by a unit complex number, say eiθ . We can scale
the plane, again centered on 0, by multiplying by a real number, say λ ∈R. Finally, we can translate the plane
by adding a complex number, say w. These give M = (eiθ ,0;0,1) (elliptic), M = (λ ,0;0,1) (hyperbolic), and
M = (1,w;0,1) (parabolic). Every Möbius transformation is equivalent, via conjugation, to one of these.

Figure 2 (top row) shows an initial test pattern, and the results of applying a rotation by θ = π/8, of
scaling by a factor of λ = 2, and of adding w = 1/2. The parabolic case is included for completeness; it is not
clear how this might be used in image editing. Here we have placed zero, the origin of the complex plane,
at the “front pole” of the sphere: the front intersection of the blue equator and red longitude. Note how the
hyperbolic transformation scales distances up by a factor of two at zero but scales distances down by a factor
of two at the antipodal point, ∞. In fact, Möbius transformations allow us to rotate or scale fixing any two
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points of the sphere. As an example, see Figure 3; we show a frame of raw footage and the transformed frame
from a video4 exploring many of the effects in this paper.

Every Möbius transformation, other than rotations about antipodal points, distorts spherical distance.
However, as illustrated in Figure 2, right angles always remain right angles. In fact, Möbius transformations
are conformal: they preserve all angles. Thus images are not sheared or non-uniformly stretched; features
remain essentially recognisable. All of the transformations in this paper mapping the sphere to itself are
conformal, apart from at a discrete set of points. Note that the equirectangular projection is not conformal;
both distances and angles are distorted.

(a) The input image. (b) The result of rotating by an angle of π/12.

Figure 3: Rotating a spherical photograph of Vi Hart and Henry Segerman, about Vi’s eyes.

Pulling Back, Pushing Forward, and Branch Points

If we want to apply a transformation T to a pixel-based input image Iin, we need to find the inverse
transformation S = T−1. This is because the algorithm to generate the output image Iout runs in reverse: for
each desired pixel p of Iout, we take its position zp, compute S(zp), and assign p the same color as the pixel
with position S(zp) in Iin. (In fact we take a weighted average of colors of input pixels nearest to S(zp).) Note
that, in order to have an algorithm, the transformation S = T−1 must be single-valued, but T need not be. We
call this procedure pulling back via S or, equivalently, pushing forward via T .

Now consider Figure 4a. If we take T (z) =±√z and S(z) = z2 then we obtain Figure 4b. Here we see a
new feature, branch points, around which nearby imagery is repeated. To see the branch point more clearly,
we rotate Figure 4b to get Figure 4c. The number of repetitions is the order of a branch point. In Ĉ the branch
points are of order two and lie at zero and infinity. In Figures 4b and 4c they are on the floor and the ceiling.
These branch points are unavoidable: any conformal transformation of Ĉ is either a Möbius transformation or
has branch points [2, Section 4.3.2].

Figure 4d shows the result of pulling back via a variant of the complex exponential map, specifically
S(z) =−e−λ( 1+z

1−z). Here λ is a scaling parameter and the Möbius transformation M(z) = 1+z
1−z is a rotation by

π/2 about ±i; this ensures that the image repeats horizontally rather than vertically. In this case, the forward
transformation T (z) is a variant of the complex logarithm, so is infinitely valued. Thus the output contains
infinitely many copies of the input image. The branch points are again on the floor and the ceiling, but are of
infinite order.

The same techniques can be used to combine different spherical images into a single spherical image. This
provides a spherical analogue of the familiar “split screen” trope in rectangular video: compositing multiple
video clips into a single screen. We, however, can stitch the different images seamlessly, if they match along
suitable arcs between the branch points. We created a spherical video along these lines, in which the second

4https://www.youtube.com/watch?v=oVwmF vrZh0
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(a) The input image. (b) Pulling back by S(z) = z2.

(c) Rotated to show an order two branch point at the center. (d) Pulling back via S(z) =−e−4( 1+z
1−z ).

Figure 4: Transformations applied to a spherical photograph featuring Emily Eifler, Vi Hart, Andrea Hawksley, and
Henry Segerman, all appearing twice. In these images the origin 0 ∈ C corresponds to the top of the equirectangular
projection while infinity corresponds to the bottom, other than for Figure 4c.

author appears to be in a two-fold branched cover of his apartment5. The footage is stitched together with a
video of the empty apartment, so that only one copy of the author appears in the combined video.

The Droste Effect

A common artistic and mathematical motif is that of “self-similarity”; this is often called the Droste effect in
commercial and computer graphics. A “straight Droste effect”, as found on the packaging of the eponymous
Dutch cocoa, is obtained when the entire picture is included, under a shrinking transformation, inside of
itself. The “twisted Droste effect” was first introduced by M.C. Escher in his Print Gallery lithograph. The
mathematics behind Escher’s image was explained by Bart de Smit and Hendrik Lenstra [3].

It is possible to obtain both the straight and twisted Droste effect in spherical images using Möbius
transformations, the complex exponential map, and the complex logarithm (see also [10, page 223]). We
simplify the discussion here by suppressing all mention of equirectangular and stereographic projections. We
begin with a spherical image, say Figure 4a. We remove everything inside a small disk (here the inside of the
frame on the wall) and everything outside a larger disk, to obtain a Droste annulus; see Figure 5a. We arrange
matters so that there is a scaling transformation M(z) = λ z that takes the outer boundary of the annulus to the
inner boundary. Thus we may tile the sphere (minus two points) by copies of the annulus, obtaining a straight
Droste image; see Figure 5b.

Applying a logarithm unwraps the Droste annulus to give an infinite vertical strip in C with width logλ ;
see Figure 5c. Another way to obtain the straight Droste effect is to tile the plane by horizontal translations of
the strip and apply the exponential map. Instead, we may follow De Smit and Lenstra [3, Figure 10], and

5http://www.youtube.com/watch?v=UUW ZU3 TQM
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(a) A Droste annulus. (b) A straight Droste image.

(c) Log of the Droste annulus. (d) A different fundamental rectangle.

(e) A twisted Droste image. (f) Here the image inside the frame differs from the one outside.

Figure 5: Droste effect images. These images answer the question of what an observer inside of a Droste effect image
sees when they look away from the frame: there is a flower-shaped portal floating in the middle of the room.
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obtain a twisted Droste effect. We scale and rotate so that the rectangle shown in Figure 5d is vertical and has
height 2π . Applying the exponential map yields Figure 5e.

Figure 5f shows a still image from a straight Droste video5 in which different Droste annuli are offset in
time as well as in space. The video is continually scaled, giving the impression of movement through the
window. The time offset between neighboring annuli matches the apparent flight time of the camera; thus the
video loops.

All constructions of Droste effect images seem to involve “cut-and-paste” techniques; here we had the
choice of frame and the choice of scaling. In contrast, the pullback techniques of the previous section can be
applied to any spherical image whatsoever. The output is seamless; the only blemishes are the branch points.

(a) Peirce’s quincuncial projection.

(b) On a torus, as in Figure 7a.

Figure 6

Weierstrass and Schwarz-Christoffel

The exponential and logarithm are just two of the many beautiful
flowers in the field of complex analysis. More exotic “elliptic” func-
tions can be used; as far as we are aware, the earliest application
to spherical images is due to Charles Sanders Peirce, in 1879 [9]
(see also [1]). Figure 6a shows Peirce’s quincuncial projection; in
Figure 6b we wrap it around the square torus6.

Consider the Weierstrass ℘–function; we refer to [2, Chapter 7]
for an excellent and short introduction. As a series the function for
the square lattice is:

℘i(z) =
1
z2 + ∑

′
(

1
(z−w)2 −

1
w2

)
.

The sum ranges over the non-zero Gaussian integers w ∈ Z[i]. It is a
non-trivial exercise to check that ℘i(z+1) =℘i(z+ i) =℘i(z). That
is, the Weierstrass ℘–function is doubly periodic. In comparison, the
exponential function is only singly periodic: exp(z+2πi) = exp(z).
The above series converges very slowly; for image processing we
instead implement ℘i using theta-functions [6, page 132].

Since ℘i is doubly periodic, we think of it as first mapping the
plane C to the square torus T, which then maps to the Riemann sphere
Ĉ via a branched double-cover. So, we start with our standard spher-
ical image (Figure 7a, left7). We pullback to T and obtain a toroidal
image (Figure 7a, right8). Note that the toroidal image contains two
copies of the original, and has four branch points. Cutting T open
we obtain Figure 7b; a square containing two copies of the original,
spherical, image. This is the unit cell of a tiling of C, obtained by
pulling back via ℘i.

Just as the exponential function has its logarithm, the Weierstrass function ℘i has an inverse. This map,
denoted sc4, takes the disk to the square. This, then, is a Schwarz-Christoffel function [2, Section 6.2.2]. In
general, these functions are given by difficult integrals, but for regular n–gons there is a very pretty expression
in terms of the hypergeometric function [5, Exercise 5.19]:

scn(z) =
∫ z

0

dw

(1−wn)
2
n
= z · 2F1

(
1
n
,
2
n

;1+
1
n

;zn
)
.

5https://www.youtube.com/watch?v=qvh-EAipIUk 6https://skfb.ly/NJRx 7https://skfb.ly/NKox 8https://skfb.ly/NKpq
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(a) The two-fold branched covering maps from the torus to the sphere
by “folding” the torus around the red “skewer”. The four skewered
points of the torus become the four red dots on the sphere.

(b) Cutting open the torus yields a square
that tiles the plane.

(c) A fundamental domain after rescal-
ing by z 7→ (1+ i) · z.

(d) Map down to the sphere again via Schwarz-Christoffel. The composition is
the rational map z 7→ i

2 (−z+1/z).

(e) The result if we instead use z 7→ 2 · z. The corresponding
rational function is z 7→ (z2+1)2

4z(z2−1) .
(f) The result if we instead use z 7→ (2+ i) · z. Now we obtain

the rational map z 7→ z ((−1+2i)+z2)2

(−i+(2+i)z2)2 .

Figure 7: Images produced using Weierstrass and Schwarz-Christoffel maps.
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We are now ready to “twist”, in similar spirit to the twisted Droste effect. We pullback the tiling in C via
the map z 7→ (1+ i) · z. A unit cell for this finer tiling is shown in Figure 7c. We pull this back to Ĉ using the
map sc4 and obtain Figure 7d. Pulling back (in C) by other Gaussian integers gives other interesting effects;
see Figures 7e, and 7f.

(a) Glue opposite sides to obtain the
hexagonal torus.

(b) A fundamental domain after rescaling by z 7→
(1+ω) · z.

(c) The result of pulling up and pushing down is the rational function is z 7→ z3+
√

2
3ω·z2 .

Figure 8: Images produced with the hexagonal torus replacing the square torus.

It is well-known that gluing opposite sides of a square produces a torus. Less familiar is the fact that a
torus also results from gluing opposite sides of a hexagon. We can now perform similar transformations to
those above using the hexagonal torus. We pull our standard image Figure 4a back using the Weierstrass
function ℘ω where ω is the usual sixth root of unity – that is, the sum is over the lattice Z[ω]. We now
pullback by z 7→ (1+ω)z and then by the appropriate Schwarz-Christoffel function. See Figure 8.

In all cases the overall map from Ĉ to Ĉ is conformal, apart from a finite set of points. Thus it is in fact
a rational map [2, Section 4.3.2]. It is far faster to use this rational function rather than the composition of
elliptic and hypergeometric functions. It is possible to find the rational function synthetically [7, Chapter 7],
but we found it simpler to proceed numerically, as follows. We must find the coefficients {ai,bi} of a rational
function f (z) = (∑n

i=0 aizi)/(∑n
i=0 bizi) of known degree n. Since f is given above as a composition we can
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(a) The input image.

Da
DA

Db

DB

(b) The disks Da, DA, Db, DB in the Riemann sphere.

(c) A spherical Schottky image.

Figure 9: A spherical double Droste effect, using a Schottky group.

sample f at a number of points z j, getting the results w j = f (z j). Each sample gives a row

(zn
j ,z

n−1
j , . . . ,z j,1,−w jzn

j ,−w jzn−1
j , . . . ,−w jz j,−w j)

of a matrix M with the property that M · (an,an−1, . . . ,a1,a0,bn,bn−1, . . . ,b1,b0)
T = 0. With enough samples,

M has a one-dimensional kernel, which can be found using the singular value decomposition method.

Schottky Groups

Suppose that a and b are hyperbolic (that is, zooming) Möbius transformations. Suppose that Da, DA, Db, DB

are four closed disjoint disks in Ĉ so that a maps the interior of DA onto the exterior of Da, and similarly for b.
Then the group generated by a and b is called a two-generator Schottky group [8, page 98].

Schottky groups can be used to generate impressive images; for a richly illustrated introduction to the
underlying mathematics see [8]. David Gu has also experimented with applying Schottky reflection groups to
photographs10. We now discuss how to apply these ideas to spherical images.

10See http://www3.cs.stonybrook.edu/∼gu/lectures/lecture 1 Escher Droste Effect.pdf.
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We begin with an input image Figure 9a. We must choose the positions of the disks Da, DA, Db, and
DA. In the final image these will contain zoomed copies of (part of) the input image. For Da we choose the
window; for Db we choose the large round mirror lying below the camera, on which the tripod is standing.
We trace over Da and Db in Photoshop to make a mask image in which the window is red and the mirror
green, as shown in Figure 9b. We now choose two hyperbolic Möbius transformations, A and B, and set
DA = A(Ĉ−Da), in white, and DB = B(Ĉ−Db), in blue. We choose A and B so that the all of the disks are
disjoint, and no disk covers an important part of the input image. Let a = A−1 and define b similarly.

To generate the image11 shown in Figure 9c, for each pixel p, we perform the following routine.

1. Set q = p.

2. If q lies in the black region of the mask, color p the same as the color of q and stop the routine.

3. Otherwise, if q lies in DX then replace q by x(q) and go to step 2.

In general, a Schottky group can have more than two generators, or indeed fewer. Using just one generator
recovers the straight Droste effect; Ĉ− (Da∪DA) is the Droste annulus. It is interesting to ponder how one
might apply the twisted Droste effect throughout a Schottky image, but that is a task for another day.
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