
Helical Petrie Polygons

Paul Gailiunas

25 Hedley Terrace, Gosforth

Newcastle, NE3 1DP, England

email: paulgailiunas@yahoo.co.uk

Abstract
A Petrie polygon of a polyhedron is defined as a circuit of edges such that exactly two consecutive edges lie in the 
same face. In the case of an infinite polyhedron (or honeycomb or sponge) this definition leads to an infinite helical 
path, rather than a circuit. Since there is a one-to-one correspondence between the edges of a polyhedron and its  
dual it is possible to transform the Petrie polygons of one into the other, and if the transformation is continuous 
there can be interesting intermediate configurations. If the sponge is regular the Petrie polygons can be replaced by 
circular helices passing through polyhedral vertices. The helices can be transformed in an analogous way to the 
polygons, again with interesting intermediates.

Three dimensional networks can be considered as the edges of a polyhedral space packing, although the faces of 
the polyhedra may not always be planar. Often a sponge can be made by removing some of the faces, and such 
cases  are briefly considered. Arrangements  of  circular helices previously used by artists  and researchers  are 
recalled, and the possibility of finding further arrangements derived from 3-D networks is suggested.

Petrie Polygons

While still at school (with H.M.S.Coxeter) John Flinders Petrie first considered the non-planar zigzag 
equatorial polygons found in regular polyhedra [1]. A more general definition that can be used for any 
polyhedron specifies a Petrie polygon as a path (circuit if the polyhedron is finite) of edges such that any 
two (but no more) consecutive edges lie in the same face (figure 1). Since any edge is shared by exactly  
two faces, there are two possible paths once the first edge is chosen, but after that the path is uniquely  
determined. For the same reason every edge lies in exactly two Petrie polygons.

Figure 1: Petrie polygons of the cube and octahedron.

Two polyhedra are dual if there is a one-to-one correspondence between the faces/vertices of one and 
the vertices/faces of the other, and it follows that there is a one-to-one correspondence between the edges 
of dual polyhedra since each edge lies both between a pair of vertices and between a pair of faces. In  
particular there is a one-to-one correspondence between the Petrie polygons of dual polyhedra, since if one 
edge in a circuit is incident with a vertex so is the next edge (but there are no others), exactly matching the 
relationship between edges and faces in the definition of Petrie polygons. Although there can be problems 
in determining specific well-defined duals of polyhedra in general, there is no difficulty if it is regular, and 
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it is possible to smoothly transform the Petrie polygons of a polyhedron to those of its dual [2]. Figure 1  
shows a cube with one of its Petrie polygons and its dual, the regular octahedron, with the corresponding 
Petrie polygon.

Infinite Polyhedra (Sponges)

Petrie also discovered two regular infinite polyhedra, and Coxeter found a third [3]. Petrie's form a dual 
pair,  one,  {4,6},  with six squares at each vertex,  the other, {6,4} with four hexagons at each vertex.  
Coxeter's, {6,6}, with six hexagons at each vertex, is self-dual. They can be constructed from packings of 
polyhedra by replacing pairs of coincident faces with a single face, and removing some of them: Petrie's 
from a packing of cubes, removing half the squares, and from a packing of truncated octahedra, removing 
all the squares; Coxeter's from a packing of tetrahedra and truncated tetrahedra, removing the triangles 
(see figure 3). These structures are known variously as the regular sponges, regular honeycombs, regular 
skew polyhedra or regular skew apeirohedra.

The faces around a vertex form a zigzag circuit, rather like Petrie's polygons, so that, unlike normal 
polyhedra, there is no choice of relative scale in a compound of a regular sponge and its dual: the vertices 
of one must lie at the centres of the faces of the other.

There are many more, less regular, sponges: some derived from polyhedral space packings (for example 
by removing half the hexagons in a packing of truncated octahedra, rather than squares as in the regular  
sponge), and others made by constructing tunnels between polyhedra (for example exploding a packing of 
truncated octahedra, filling the gaps with  hexagonal prisms and removing all the hexagons produces a 
sponge with five squares at each vertex) [4].

If non-planar faces are allowed (as in so-called saddle polyhedra [5]) then there are further possibilities 
[6]. For example the first stellation of the rhombic dodecahedron (sometimes called Escher's solid) will 
fill space. It can be considered as an octahedron with faces that are skew hexagons with 90° angles, which 
could be filled with a saddle surface. Proceeding as before and removing half the faces leaves (if the area 
of the saddle surface is minimised) what Pearce [6] calls a labyrinth, and is an example of a triply periodic 
minimal surface [7]. This one is Schwartz's D surface (figure 2).

Figure 2: A packing of stellated rhombic dodecahedra and Schwarz's D surface.

Petrie Polygons of Sponges

If Petrie polygons are constructed according to the standard definition, the regular sponges yield helical 
paths (figure 3). They are helical in the sense that they have screw symmetry, and rather than polygons 
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they are more accurately termed helical skew apeirogons. They will be either right-handed or left-handed 
depending on the choice made for the second edge when applying the definition.

           
Figure 3: Petrie polygons of the three regular sponges.

Less regular sponges also have helical apeirogons as Petrie polygons, although obviously if the faces 
include more than one type of polygon, the apeirogons are not regular, and if there are different dihedral 
angles there will again be more than one size of angle between the edges of the apeirogon.

Things are different if the faces are non-planar. For example in Schwarz's D surface (figure 2) the Petrie 
polygons are not helical but correspond with skew hexagons that are edges of the faces that have been 
removed from the packing of saddle polyhedra (figure 4).

Figure 4: A Petrie polygon (black) of Schwarz's D surface considered as a regular sponge.

Transforming the Petrie Polygons. Just as with standard (spherical) polyhedra it is possible to smoothly 
transform the Petrie polygons of a sponge into those of its dual. In this case an intermediate stage consists 
of just a line along the axis of screw symmetry. The transformation can be extended, typically by varying 
a parameter, and it may take other values when vertices or even edges of the Petrie polygons coincide.  It  
is  generally  not  easy  to  see  how such configurations  relate  to  known three  dimensional  polyhedral 
packings (if they do at all) but figure 5 shows an example where the vertices of the Petrie polygons of the 
regular sponge {6,4} have been moved further from the axis of symmetry until the edges meet in groups 
of  three  and  four  at  their  mid-points.  They  lie  along  edges  of  the  packing  of  stellated  rhombic 
dodecahedra. Notice that the edges of the transformed Petrie polygons do not lie along the skew hexagons 
that are retained in the saddle octahedron (see figure 2).
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Figure 5: Transformed helical Petrie polygons that lie along edges of stellated rhombic dodecahedra.

Using Circular Helices

In the particular cases of regular sponges it is possible to construct circular helices passing through the 
vertices of the Petrie polygons, corresponding to the edges. Since every edge of a polyhedron lies on two 
Petrie polygons choosing either right-handed or left-handed helices will provide a match for all of the 
edges, and generate attractive representations of the regular sponges without mirror symmetry (figure 6).

Figure 6: Representations of the regular sponges constructed with circular helices.

       
Figure 7: Elements, from the regular sponges represented by helices, with the faces filled in.
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Filling in the surfaces in a way analogous to the construction of saddle polyhedra generates polyhedral 
objects that could be used to make labyrinths (figure 7). Notice the edges of filled-in faces are convex and 
those of the missing faces are concave.

Transformations. The circular helices can be transformed in an analogous way to the apeirogons simply 
by varying the radius. Clearly when the radius is zero the helices become lines that lie along the axes of 
screw symmetry of the sponge. Increasing the radius beyond the value that corresponds with a regular 
sponge shrinks the hole (as well as changing the alignment, so the helices no longer touch) until eventually 
the helices intersect. In the case of {6,4} it is a square that shrinks, so that four helices intersect lying 
approximately along a pair of perpendicular lines (figure 9). {6,6} has tetrahedral gaps, so six helices  
intersect when it has shrunk completely (one for each edge of a tetrahedron), and {4,6} has cubic gaps so 
there is an intersection of twelve helices. In both cases a complicated network is produced.

Increasing the radius still further produces helices that wind around each other in the way that has been 
used extensively by Alexandru Usineviciu [8, 9], and he has already created a sculpture of a tetrahedron 
that is a fragment of the expanded helices of{6,6} (figure 8) [private correspondence].

Figure 8: Interlaced helices forming a tetrahedral arrangement.

If the size of the radii of the helices of {6,4} is taken as 1 then as it is reduced to zero the helices become 
straight lines. The dual, {4,6}, reached by going beyond zero occurs when the helices have radii that are 
twice the size, but measured in the opposite direction, so it can be considered to be -2. When the radii are 
twice the size the helices intersect in fours (the arrangement already mentioned), and when the radii are 
quadrupled the helices correspond with the vertices of the apeirogons in figure 5. Of course they cannot lie 
along the edges of the stellated rhombic dodecahedron, which are straight lines, and the configurations 
match only at the 6-fold vertices (figure 9).

          
Figure 9: Doubling and quadrupling the radius of the helices of {6,4}.

When the radii of the Petrie helices are doubled, and helices intersect in fours, other intersections occur 
that do not correspond with squares in {6,4}, so that all of  the vertices of the Schwarz D surface are 
represented. The arcs of helices (with a radius of 2) shown in the figure correspond with one turn of the 
helices of the dual cubic sponge with  a radius of -2 (changing the sign of the radius, equivalent to a half-
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turn about the screw axis, changes the orientations, and the helices of {4,6} have the same size radius). It  
is not possible to remove half of the helices to leave a helical representation of the 4-valent 3-D network, 
as careful inspection of the helical arcs corresponding to the edges of a skew hexagon will make clear.

Some Other Arrangements of Helices

Helices derived from the Petrie polygons of the regular sponges and their transformations by no means 
exhaust  the  possible  ways  of  arranging  helices.  Reference  has  already  been  made  to  the  work  of  
Alexandru Usineviciu,  introduced to Bridges by Paul  Tucker,  who has made his own exploration of 
“moorish  fretwork”  [10,  11],  and  Koos  and  Tom  Verhoef's   zigzagzeg  and  zigzagzegzug  mitred 
constructions [12] include some that are more than interlacings of parallel arrangements of helices.

The 3-D networks first  investigated  by  A.F.Wells  (see [5]  for  extensive references) are  the basis  of  
Pearce's work on labyrinths, but their use to find arrangements of helices (other than Wells's (10,3)a, in 
which the helices are immediately obvious [13]) has hardly been considered. It seems that much remains 
to be discovered.
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