
Modeling Braids, Cables, and Weaves with Stranded Cellular
Automata

Joshua Holden∗

Department of Mathematics, Rose-Hulman Institute of Technology
5500 Wabash Ave., Terre Haute, IN 47803, USA

holden@rose-hulman.edu

Lana Holden
Skew Loose, LLC, Terre Haute, IN 47803, USA

http://www.ravelry.com/designers/lana-holden

lana@knittinglaboratory.com

Abstract
The mathematical study of braids involves with mathematical representations of one-dimensional strands in three-
dimensional space. These strands are also sometimes viewed as representing the movement through a time dimension
of points in two-dimensional space. On the other hand, the study of cellular automata usually involves a one- or two-
dimensional grid of cells which evolve through a time dimension according to specified rules. This time dimension is
often represented as an extra spacial dimension. The ideas of representing both strands in space and cellular automata
have also been explored in many artistic media, including drawing, sculpture, knitting, crochet, and weaving. This
paper presents a system of Stranded Cellular Automata which realistically captures the behavior of strands in certain
media, such as knitting and crochet.

Introduction

Knots and other forms of interlacing strands have been used for decorative and artistic purposes for thousands
of years. These can be actual knots, such as in Chinese knotwork or macramé, or woven textiles, such as loom
weaving, basket weaving, or plaiting. They can also be two-dimensional depictions of interlaced strands,
which can be found in Roman mosaics, in the “Celtic Knot” decorations of Christian manuscripts from the
British Isle, and in Islamic art, among many other places. And three-dimensional materials which are not
actually interlaced can be used to give an illusion of interlacing, as in bas-relief, in knitted or crocheted
“cables”, or in the “traveling eyelets” used in knitted lace.

The complex but structured nature of many of these patterns suggests the possible use of cellular au-
tomata to model them. A cellular automaton is a mathematical construct which models a system evolving in
time. It is characterized by a discrete set of cells, finite or infinite, in a regular grid, with a finite number of
states that a cell can be in. Each cell has a well-defined finite neighborhood which determines how the cell
will evolve through the different states. Time moves in discrete steps, and the state of each cell at time t is
determined by the states of its neighbors at time t − 1. Finally, each cell uses the same rule to determine
its state. Examples include the “Game of Life”, invented by John Conway [1] and the “Elementary Cellular
Automata” popularized by Stephen Wolfram [9].

Given a grid, a rule, and a starting state, the evolution of a cellular automaton is often depicted graphi-
cally. In the case of the Game of Life, the grid is two-dimensional and the evolution is generally portrayed
using animation. In the case of Elementary Cellular Automata, the grid is one-dimensional and the evolution
is often shown using a second dimension to represent time.
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Cellular Automata for Braids, Cables, and Weaves

In the examples noted above, each cell can only be in one of two states. Since we want to represent “stranded”
designs, we will need more states. Each cell can hold no strands, only a strand starting on the left, only a
strand starting on the right, or strands starting on both sides. The strands can be upright or slant from one
side of the cell to the other. If there are two slanting strands they will cross, and we need to specify which
strand is on “top”. (For now, we are not considering the possibility where one strand is slanted and the
other is upright.) All of this amounts to four pieces of information but only eight distinct states, as shown in
Figure 1.

upright slanted

no strands

left only

right only

both

Figure 1 : Each cell will store four pieces of information in eight states.

The neighborhood we will use will be a one-dimensional version of the Margolus neighborhood studied
in [7, Chapter 12], as shown in Figure 2. Unlike the standard for Elementary Cellular Automata, we will
represent time as moving from the bottom of our pictures to the top, in order to make it resemble a knitting
or crochet pattern. Therefore the state of a given cell at time t depends on the state of two neighbor cells at
time t− 1, where those cells are represented as the two cells which touch it from below in the picture.

Figure 2 : The neighbors of each cell are the two cells which touch it from below.

In theory, our cellular automaton could use any of the 88·8 ≈ 6 · 1057 rules which map the states of
the two neighbor cells to the state of the new cell. However, the Stranded Cellular Automata system we use
restricts this rule set for aesthetic and practical reasons. First, we specify that if the left neighbor has a strand
ending on the right, the new state will have a strand starting on the left, and similarly for the right neighbor.
Figure 3 shows examples of this. In order to preserve the continuity of the strands, we will not consider
changing these conditions here. This still leaves 23·525·335·5 ≈ 9 · 1020 possible rules, which is a very large
rule set to explore. In order to provide a practical starting point for exploration, we have chosen to break our
system into two simpler cellular automata controlling different aspects of the state.

The first cellular automata controls whether strands are upright or slanted, based on whether the strands
in the neighbor cells are upright, slanted, or absent. This can be thought of as a function which takes nine
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no left left

no right

right

Figure 3 : The conditions controlling whether strands are present or not.

possibilities as input (three for each neighbor) and for each possible input chooses one of two possibilities
as output (upright or slanted). This gives 29 = 512 possible functions. We code these functions using binary
numbers as a “Turning Rule”, similarly to the coding for Elementary Cellular Automata in [9]. Figure 4
shows Turning Rule 39, which in binary is 000100111. (Note that in fact bit 4 always controls an empty cell
and thus its value does not affect the final output.)

bit 8 = 0 bit 7 = 0 bit 6 = 0

bit 5 = 1 bit 4 = 0 bit 3 = 0

bit 2 = 1 bit 1 = 1 bit 0 = 1

Figure 4 : Turning Rule 39.

The second cellular automata controls which strand is on top if the strands cross. Each neighbor again
is considered to have three possibilities: the strand going towards the new cell is on top, the strand going
towards the new cell is on the bottom, or strands do not cross. (In the last case either there is only one strand
or the two strands are upright.) Again, there are two possible outputs and 29 = 512 rules, coded in binary as
“Crossing Rules”. Figure 5 shows Crossing Rule 39.

The remaining thing to consider is what happens at the edge of the grid. We could make the grid
infinite, as in [9]. This seems somewhat unsatisfying for artistic purposes, especially fiber arts. We could
have a special kind of state for edge cells that does not allow strands to propagate through the edge. (This
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bit 8 = 0 bit 7 = 0 bit 6 = 0

bit 5 = 1 bit 4 = 0 bit 3 = 0

bit 2 = 1 bit 1 = 1 bit 0 = 1

Figure 5 : Crossing Rule 39.

could be thought of like a selvage on a piece of fabric.) Or we could achieve a similar effect by modifying the
topology of the grid so that cells are reflected upon themselves at the edges. In that case, we would need to
choose where to put the axis of reflection. Finally, we could make the grid cylindrical so that the left and right
edges are identified. (In the cellular automata literature, this is known as “periodic boundary conditions”.
See, for example, [4].) So far we have only explored the cylindrical case. For physical representations, one
could “cut” the cylinder in a convenient place and unroll it, or use it in a tubular context such as a sock or the
sleeve of a garment.

Examples from Fiber Arts

Cellular automata have been used in fiber arts in the past. Many artists have represented Elementary Cellular
Automata using knitting and crochet, including Debbie New [6, Section 7], Jake Wildstrom [8], and Nora
Gaughan [2, Chapter 5]. In fact New has incorporated cables into cellular automata designs, but in her case
the cellular automata only control the existence of crossings between parallel strands, not the directions of
crossings or the turning of the cables.

There are at least two ways to simulate Elementary Cellular Automata using Stranded Cellular Au-
tomata. One is to let all cells have two strands and all of the crossings be the same. The turning rule then
takes one of two possible states for each neighbor and outputs one of two possible new states, just like an
Elementary Cellular Automata. Using Turning Rule 68 and Crossing Rule 0 produces the same Sierpinski
triangle as Elementary Cellular Automaton Rule 90, as shown in Figure 6.

Another way is to let all of the cells be filled with crossings. Then the crossing rule takes one of two
possible types of crossings for each neighbor and outputs one of two possible new crossings. Using Turning
Rule 0 and various crossing rules produces the weaving patterns shown in Figure 7.

Using both turning and crossing rules lets us reproduce the traditional braid patterns shown in Figure 8.
The first two pictures show traditional three- and four-strand flat braids and the third shows a four-strand
round braid.
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Figure 6 : Turning Rule 68 and Crossing Rule 0.

Figure 7 : Left: Rules 0 and 47. Right: Rules 0 and 448.

Using both turning and crossing rules also lets us generate patterns reminiscent of traditional cable
designs from knitting and crochet. An exploration of the space of rules and starting states reveals many
many new patterns, some of which are quite aesthetically pleasing. Two of these are shown in Figures 9
and 10. (The first of these also appeared as a knitting pattern in [3].)
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Figure 8 : Left and Center: Rules 333 and 39 with different starting states. Right: Rules 333 and 99.

Future Work

Much work has been done in the classification of patterns in the Game of Life and in Elementary Cellular
Automata. In particular we could classify patterns which go to the same “ending state” under a given rule
or category of rules. In the case of a finite width grid any pattern will eventually become periodic, so an
important question is how long these periods can be. Some work on this has been done for the cellular
automata described here, which will appear in a forthcoming publication. There are still many open cases.
Cellular automata rules can also be classified by whether they are reversible, in the sense that each possible
state of a row is generated by exactly one state of the previous row. This work has not yet been started for
Stranded Cellular Automata.

Another question would be to classify which braids, in the sense of mathematical braid theory (see,
e.g. [5]) can be represented by this model. Classifications based on traditional fiber arts patterns (knitting,
crochet, braiding, weaving, macramé, etc.) would also be interesting.

As mentioned above, so far we have only investigated the case of cylindrical topology. It would be
interesting to investigate topologies that incorporate reflection. It would also be interesting to look at grids
where the topology changes with time; perhaps varying in size or in reflection vs. periodicity. Finally, one
could look at a two-dimensional grid, as in the Game of Life, and use time as the third dimension instead of
the second. This would result in a more sculptural structure, which could be rendered in traditional sculptural
materials or in a strongly three-dimensional fiber art such as macramé.
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Figure 9 : Left: Rules 47 and 0. Right: The pattern depicted as cables on a sock, overview and close-up.

[3] Lana Holden, Knit Stranded Cellular Automata, Sockupied (Spring 2014), 10–11.

[4] Erica Jen, Cylindrical Cellular Automata, Communications in Mathematical Physics 118 (December
1988), no. 4, 569–590.

[5] Wilhelm Magnus, Braid Groups: A Survey, Proceedings of the Second International Conference on The
Theory of Groups, Springer, Berlin; Heidelberg, 1974, pp. 463–487.

[6] Debbie New, Unexpected Knitting, Schoolhouse Press, Stevens Point, WI, 2003.

Modeling Braids, Cables, and Weaves with Stranded Cellular Automata

133



Figure 10 : Left: Rules 201 and 39. Right: The pattern depicted as cables on a cowl, overview
and close-up.

[7] Tommaso Toffoli and Norman Margolus, Cellular Automata Machines: A New Environment for Model-
ing, The MIT Press, Cambridge, MA, 1987.

[8] D. Jacob Wildstrom, The Sierpinski Variations: Self-Similar Crochet. Chapter 3, Making Mathematics
with Needlework: Ten Papers and Ten Projects, A K Peters/CRC Press, Wellesley, MA, 2007, pp. 40–52.

[9] Stephen Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, 2002.

Holden and Holden

134


