
A Pattern Tracing System for
Generating Paper Sliceform Artwork

Yongquan Lu and Erik D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar St., Cambridge, MA 02139, USA
yqlu@mit.edu, edemaine@mit.edu

Abstract
Sliceform paper art is an art form where long strips of paper are cut, folded and slotted together to form intricate
geometric configurations. We present a system that streamlines the design process for such artwork, which are con-
ventionally highly time-consuming to assemble. This system takes in a polygonal tile-based geometric configuration
and traces patterns across tile boundaries to produce a strip-based representation, which can be used to generate the
physical paper strips for easy assembly. We exhibit some representative results generated by our system.

Introduction

Sliceform paper artwork is an artform where long strips of paper are cut, folded and slotting together to form
geometric configurations. Historically, paper sliceforms have omitted the folding step and focused on 3D
shapes; the technique specifically discussed in this paper were first pioneered by artists such as Chris Palmer
and Jeff Rutzky [4], and have since been popularized by others such as Christiane Bettens [1]. Fig. 1 shows a
representative example. While the physical results are beautiful, assembling a single piece can takes 8 hours
or more, if tasks like calculating strip dimensions are done manually. To streamline the design process and
promote the art form, we set out to develop a system that automates away these manual tasks.

Since this medium involves weaving strips in intricate ways, it is natural to build on existing visualiza-
tion techniques for designing and composing Islamic star patterns. Much literature has been written on the
subject; in particular, our process is based on Kaplan’s approach [2], where geometrical configurations are
formed by inscribing polygonal tilings with geometric motifs. While much of the existing artwork, like in
Fig. 1, is based on traditional Islamic motifs, in theory there is no such restriction.

Such an approach is good for flat renderings of geometric star patterns. However, it is by itself insuffi-
cient for designing sliceform paper artwork. Inscribing motifs in tiles creates a visual illusion of long strips
that weave in and out of each other, but the system has no notion of a contiguous strip (see Fig. 2).

Figure 1: Festival (2010), by the first
author.

Figure 2: Here, polygonal tiles with inscribed motifs are composed via
existing techniques (left) and rendered as an interwoven design (right).
Our eyes see contiguous line segments, but the system cannot yet iden-
tify, for example, the highlighted strip as a single entity.

Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture

367



This paper presents an algorithm that traces patterns across polygonal boundaries to determine relative
segment lengths and intersection positions, so that these patterns can be recreated in physical paper artwork.
We have built a web application called Wallpaper [3] that implements this algorithm and enables users to
rapidly and flexibly compose their own designs.

A pattern tracing algorithm

A typical geometric design consists of polygonal tiles inscribed with patterns joined together along their
edges. Here the term pattern has a very specific meaning: a piecewise continuous line segment confined to
the interior of the polygonal tile that starts and ends on the edge of the tile. Typically, tiles will have more
than one pattern arranged in some symmetric manner, and our objective is to trace the orbit of patterns across
polygonal boundaries.

In our implementation, each pattern stores relevant metadata about its geometry: the edges it starts and
ends on, as well as its incident angle and relative position on these edges. It also keeps track of its internal
geometric structure as a list of segments, where each segment is in turn a list of lengths between joints or
intersections. See Fig. 3 for an example.

The first step in tracing patterns across polygonal boundaries is deciding which patterns at the boundary
are contiguous and should be treated as part of the same strip. Our matching procedure works as follows: for
each pattern p incident on an edge, the algorithm filters out the patterns from the other corresponding edge
to those with relative position compatible with p. If the filter is empty, the pattern is not matched. If the filter
returns a unique pattern, they are matched.

If there are multiple patterns originating from the same position, the algorithm picks the one with
incident angle closest to that of p. It also checks that this is mutual, i.e., that p has incident angle closest to
the other edge as well. If this is true, the two patterns are matched; otherwise, p is unmatched.

Note that our checks ensure that contiguity is a symmetric relation, such that even when the user joins
two edges with incompatible pattern interfaces, the results match our visual intuition (see Fig. 4).

Figure 3: This rosette motif consists of 12 sym-
metric patterns. The highlighted pattern stores
the list of list of lengths between line crossings
corresponding to its internal structure from start
to end edge, namely [[2.5,1.7],[3.0,3.2,

0.9],[0.9,3.2,3.0],[2.5,1.7]].

Figure 4: Example of joined edges with in-
compatible pattern interfaces. Here, consistent
with our visual intuition, the matching algo-
rithm returns (a, v), (b, x), (c, w) and (e, y).
Patterns d and z are unmatched and their strips
terminate at this edge.

Now that patterns are matched up via this criterion, tracing them to construct strips is straightforward.
We pick a pattern on some tile arbitrarily, and start tracing across polygonal boundaries first from the entering

Lu and Demaine

368



edge, and then the exiting edge. We can then concatenate the internal list of segments stored by each pattern
onto the strip we are building (reversing it if necessary to account for orientation) to build up a full strip. At
every step, we also compare against the original pattern that we picked to detect if we enter a loop.

There are some subtleties about the concatenation process. We identify three possibilities and concate-
nate strips differently based on each case:

(a) if another pattern crosses that edge at the same point, the edge boundary is an intersection and we
concatenate the relevant segments together.

(b) if no other pattern originates from that same point and the two incident angles are compatible (within ε
of each other), the strip visually appears to be a single segment spanning the boundary and we add the
lengths together.

(c) if no other pattern originates from that same point but the two incident angles don’t match, the strip has
a joint at the edge boundary and a simple concatenation of the two lists of segments suffices.

Fig. 5 below illustrates each of these cases.

(a) Output:
[. . ., [. . ., 1.6], [0.9,

1.1], [1.5, . . .],. . .]

(b) Output:
[. . ., [. . ., 1.6], [2.0],

[1.5, . . .],. . .]

(c) Output:
[. . ., [. . ., 1.6], [0.9],

[1.1], [1.5, . . .],. . .]

Figure 5: Concatenation of patterns is performed differently depending on the edge boundary.

Now by repeating this process until every pattern in a polygonal tile has been assigned to a strip, we
may convert a tile-based representation of the geometric configuration to a strip-based one.

Strip rendering in SVG

We have also developed a utility to translate between the data representation of a strip (a list of list of
numbers) to a Scalable Vector Graphics (SVG) file representing that strip.

Given the dimensions of a strip, we can render it as a rectangle with vertical slits spanning alternately
the top or bottom half.1 Slotting strips along these slits provides a secure interwoven structure. Joints,
or creases, are rendered as full vertical lines in a separate color, so that the user can choose to fold them
manually or score them by setting the laser cutter to a different power setting. Fig. 6 shows an example of
one such generated strip.

This SVG file can either be printed and cut out by hand, or cut and scored automatically using a die
cutter or a laser cutter.

1Under relatively weak conditions – all strips terminate on the exterior of the tiling – we can assign crossings at intersections
such that each strip always alternates over and under.

A Pattern Tracing System for Generating Paper Sliceform Artwork

369



Figure 6: Strips rendered by our system based on the traced dimensions, ready for die-cutting / laser-cutting
and physical assembly.

Conclusion

Conventional Islamic star pattern design techniques are very successful in generating symmetrical and aes-
thetically pleasing geometric configurations. We have demonstrated a system that enables us to physically
recreate these geometric configurations with paper strips, by taking a tile-based data representation of such
designs and converting it into a strip-based representation.

Brimstone (see Fig. 7), demonstrates the utility of this system — design and strip generation was com-
pleted in an hour, when such an intricate configuration would previously have taken much longer to trace
and convert by hand.

Figure 7: Brimstone (2015). The geometric design (left) was traced to generate paper strips, which was
assembled to produce sliceform artwork (right).

References

[1] Christiane Bettens. “Zillij: slice form techniques applied to patterns from arabic art.”, 2009. https:

//www.flickr.com/photos/melisande-origami/sets/72157613125224450/, accessed 04-22-
2015.

[2] Craig S Kaplan. Computer generated islamic star patterns. In Proceedings of Bridges 2000, pages
105–112, 2000.

[3] Yongquan Lu and Erik Demaine. Wallpaper, 2015. http://yqlu.me/wallpaper/, accessed 04-22-
2015.

[4] Chris Palmer and Jeff Rutzsky. “Zillij”, cardstock, 12′′, 2009. https://www.youtube.com/watch?

v=2TNUxWVgZTs, accessed 04-22-2015.

Lu and Demaine

370

https://www.flickr.com/photos/melisande-origami/sets/72157613125224450/
https://www.flickr.com/photos/melisande-origami/sets/72157613125224450/
http://yqlu.me/wallpaper/
https://www.youtube.com/watch?v=2TNUxWVgZTs
https://www.youtube.com/watch?v=2TNUxWVgZTs

