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Abstract 
 

We demonstrate a simple, elegant, and visual method for decomposing irregular pentagons into a pair of affine 

images of the two distinct types of regular pentagons. Moreover, the sum of the area of the two affine images equals 

the area of the original irregular pentagon. Similarly, we decompose irregular heptagons into a triple of affine 

images of the three distinct types of regular heptagons. One can use these decompositions to design visually 

interesting sculptures reflecting these geometric relationships. 

 

Introduction 

In the 1940s, Jesse Douglas proved [2] that the 

median lines of irregular pentagons – even 

when not planar – contain the vertices of two 

affine regular stellar pentagons, one stellar 

and one non-stellar (Fig. 1). In fact, every 

polygon, of any degree, contains infinite families 

of affine regular polygons [1]. Recently, the 

author has discovered unique representatives of 

these families that preserve both location and 

area. We begin with virtual sculptures that reflect these mathematical relationships. We finish with 

geometric visualizations that show the essence of a proof of the underlying mathematics.  

Visualizing Affine Regular Decompositions of Polygons 

Figure 2 shows an irregular pentagon (in thicker lines) decomposed into a 

large affine regular pentagon and a small affine regular stellar pentagon. 

Similar to distorting clip-art, a pentagon is affine regular if it is the 

linearly skewed, translated, rotated, and/or scaled image of a regular 

pentagon. In Figure 2, we also see five parallelograms connecting the 

corresponding vertices of each pentagon to the common centroid of the 

three pentagons. These parallelograms demonstrate that each vertex of the 

irregular pentagon is the vector sum of the vertices of the two affine 

regular pentagons. When measuring area we must account for folding and 

reflecting, which can cause the area of certain regions to count double and 

other regions to count as negative area. By sequentially numbering the corresponding vertices we observe 

that the stellar pentagon in this figure is transversed in the opposite direction to the other two pentagons. 

Thus, the area of the irregular pentagon equals the area of the convex pentagon minus the area of the 

stellar pentagon with the interior region of the stellar pentagon subtracted twice. 

Figure 2: Area and location 

relationships 

Figure 1: Jesse Douglas’ construction vs.  

an area-preserving construction 
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We now consider 3D computer generated sculptural visualization models. Figure 3 shows three 

viewpoints of two slightly different “sculptures” based upon exactly the same irregular pentagon as in 

Figure 1. All three figures contain the same three pentagons with wires connecting corresponding 

vertices. The left “sculpture” shades the five parallelograms formed by the wires to show that each vertex 

of this irregular pentagon is the vector 

sum of the corresponding vertices of 

the affine regular pentagons. To help 

see that the area is preserved under 

every projection, we consider these 

three different viewpoints with the last 

two oriented almost along edges of the 

two distinct affine regular pentagons. 

In the central figure, we see that the 

irregular pentagon and the stellar 

pentagon do indeed appear to have 

similar area, counting central regions 

twice. When oriented as shown in the 

top right figure we again see that areas 

appear to be equal. Note that the 

orientation of the left triangular 

region of the irregular pentagon is 

opposite and so the area must be 

counted as a negative. By carefully 

comparing the orientations of the 

three pentagons in the top left 

orientation, we see that the area of 

the irregular pentagon should equal 

the stellar minus the convex.  

The two “sculptures” to the 

right show the affine regular 

polygons folding and unfolding out 

from the original irregular polygon 

in the center. The first shows a 

pentagon transforming into its two 

affine components while the 

second “sculpture” shows a 

heptagon transforming into its 

three distinct affine components.   

Figure 3: Three views of the same irregular pentagon and its affine regular decomposition 

Figure 4: A transformational decomposition of a pentagon 

Figure 5: A transformational decomposition of a heptagon 
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Visualizing the Essence of the Mathematics 

In this section we provide geometric visualizations to explain the mathematical essence that prove the 

relationships discussed above. We start by explaining how to use weights to create new polygons. Then 

we explain why we expect the shape of each of these new polygons to be affine regular. Next we verify 

that the original polygon is the sum of the coordinates of the vertices of these representatives. Last, we 

discuss area and how to verify that, when projected onto any plane, the area of the original polygon is the 

sum of the areas of the affine regular polygons. 

Given an arbitrary heptagon                 , we can apply a set of weights 

               to   by symmetrically calculating linear combinations of these points as follows: 

                                      

                                      
   

                                      

to obtain a new heptagon                    . For heptagons, we need to create representatives for 

each of the three distinct types of regular 

heptagons. Thus, we need three sets of weights. We 

shall use weights defined by the distance from the 

y-axis to the seven points of each of the three types 

of regular heptagons each inscribed in a circle of 

radius 2/7. The first point must lie on the x-axis and 

the order of the weights must correspond to the 

order of the vertices, as shown in Figure 6. We 

shall call these three sets of weights           

respectively. Notice some weights are negative and 

each set of weights sum to zero due to their regular 

spacing around a circle. 

We now wish to show that for any heptagon 

              , its image,      , is always 

affine regular. We start with a regular heptagon 

                of the same type as   . We then 

construct a sequence of heptagons    
            ,                   , … ,      

where each heptagon is obtained by sliding the i
th
 

vertex from ri to pi. We consider the shape of each 

image   (  ). Since    is regular, then, by the 

symmetry of the linear combinations in the definition of       , so is       .  

Let  ⃗ be the vector from point    to   , which transforms    into   , as shown 

in Figure 7a. The impact of   ⃗ on each point in         is a translation parallel 

to  ⃗ with a magnitude defined by the weights. Since the weights are defined 

by the distance from a line, Figure 6, then, by similar triangles as shown in 

Figure 7b,        is an affine transformation of       . By repeating this 

procedure,              is an affine transformation of the regular 

heptagon       , as shown in Figure 8. 

 We now verify that the vector sum of the three corresponding vertices in the affine images is a vertex 

in the original heptagon. Let                  be any heptagon centered at the origin and let W1, W2, 

and W3 be three sets of weights defined in Figure 6. Observe that these three sets merely shuffle the same 

values:    { 

 
           },    { 

 
                  }, and    { 

 
                   }. 

Let A=W1(P), B=W2(P) and C=W3(P) and let O be the heptagon with all seven vertices    at the centroid. 

Figure 6: Heptagon weights using regular 

heptagons inscribed in circles of radius 2/7 

Figure 7a:   

𝑇   &  𝑇   

  
 

 
 

Figure 7b: 

𝑊  𝑇    &  𝑊  𝑇    

Figure 8:  

𝑃  &  𝑊  𝑃   
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Since we centered   at the origin,   is the additive identity of heptagons and so             
             . It suffices to consider the sum of the first vertex of each of these heptagons: 

     

 
                                         

     

 
                                          

     

 
                                             

+       
 
         

 
        

 

 
        

 

 
        

 

 
      

 

 
        

 

 
    

                                                                

The first column is free. The pairings      ,      ,       reduce the 

remaining columns to ½∑  . Since the weights are equally spaced around a 

circle, as shown in Figure 9, this sum is zero.  

We now discuss how area is preserved, that is, why Area(A) + Area(B) + Area(C)  = 

Area(P).  First we must clarify the meaning of area for non-planar polygons. Given any polygon P in R
3
 

with centroid O, we define area to be the sum of the area vectors of triangles         computed by the 

cross product vector  
 
(   
⃗⃗ ⃗⃗ ⃗⃗ ⃗       

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ). When projecting these polygons onto a plane with unit normal  ⃗⃗, the 

area of the projection of each of these triangles will equal plus or minus the dot product of the area vector 

with this unit normal vector where the sign depends upon the 

orientation of the triangle when projected onto the plane. The 

result is that triangles can have positive or negative area and 

overlapping regions can cancel or can double the area 

depending upon their orientation.  
To prove that area is preserved we combine the previous 

methods. We use a sequence of heptagons            which 

transform the degenerate heptagon      into      by 

interchanging one vertex at a time. And we let            and 

           and            be the corresponding images 

under the transformations       and   . Since,       
        we have                            
          . As before, we slide one vertex, p1 in    by the vector  ⃗ to produce the polygon      , as 

shown in Figure 10a. Then the increase in area, shaded in Figure 10a, is  

                     
 

 
         ⃗     

 

 
 ⃗          

 

 
 ⃗           

To measure the increase in area between,          and           , shown in Figure 10b, we measure 

the increase in area of two triangles and then, using the fact that    and      are affine regular, we 

multiply this area by  
 
. Thus,  

                    
 

 
[
 

 
       ⃗         ⃗  

 

 
       ⃗         ⃗ ]    

 

 
[ 
 
         

 
       ]   

 
  

 
 ⃗  [                   ]    

 
 ⃗           

Basic properties of the cross product simplify the first long equation down to the second. The last formula 

follows from       and     

 
. The formula is the same for B and C. To complete the proof we only 

need to combine the  ’s,  ’s and  ’s to get 

(                   )  (                   )  (                   )   
 

 
 ⃗  [                       ]   

 
 ⃗         =                    . 

Hence, area is preserved. 
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 Figure 9: ½∑𝑤𝑖    

 Figure 10a:           Figure 10b: 

𝑇𝑘   &  𝑇𝑘        𝑊  𝑇𝑘   &  𝑊  𝑇     

Burkholder

336


