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Abstract
Lobke is a mathematical sculpture designed and constructed by Koos Verhoeff, using conical segments. We analyze
its construction and describe a generalization, similar in overall structure but with a varying number of lobes. Next,
we investigate a further generalization, where conical segments are connected in different ways to construct a closed
strip. We extend 3D turtle geometry with a command to generate strips of connected conical segments, and present
a number of interesting shapes based on congruent conical segments. Finally, we show how this relates to the skew
miter joints and regular constant-torsion 3D polygons that we studied earlier.

1 Introduction

Figure 1 : Lobke, a mathematical sculpture consisting of six conical segments

Figure 1 shows Lobke, a mathematical sculpture designed and constructed by Koos Verhoeff in the early
1990s. It is made from fiberglass with polyester resin on a metal mesh, and currently located in the sculptor’s
garden. The name is an affective diminutive of ‘lob’, the Dutch word for ‘lobe’. Lobke can be decomposed
into six congruent conical segments connected into one smooth continuous two-sided strip. However, there
is a practical problem to address. To understand this, we analyze the construction in more detail.

The basic idea is simple. Place six cones inside a cube, their apexes meeting in the center, and their
base circles being the incircles of the cube’s faces (Figure 2, left). The cone’s aperture (angle at the apex) is
90◦. A path on the surface of these cones can switch from one cone to another at the lines where two cones
touch each other. By switching cone after three-quarters of a cone, one can trace a closed path that travels
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on all six cones. Instead of a path, we take six three-quarter conical segments (Figure 2, right). The practical
problem is that this closed (infinitely thin) strip self-touches in six places (at one-third and two-third). When
thickening the mathematical strip to construct a physical object, it will self-intersect.

Figure 2 : Touching cones in a cube (left: three and six cones with tangent lines); connected
three-quarter conical segments in a cube (right: three and six segments with cuts)

To avoid self-intersection, the parameters of the conical segments must be adjusted. However, we want
a strip where the segments are connected smoothly, that is, two connected conical segments share a tangent at
the joint. Because of Lobke’s sixfold symmetry (60◦-rotoreflection; see Figure 3), the six cuts (where conical
segments meet) must make 60◦ angles, and when extended they intersect in the center. So, we cannot just
shrink the cones towards the cuts. The only thing we can vary of the cone is its aperture (Figure 4, left;
compare to Figure 6 of [6]; the base circles of all these conical segments lie neatly on a sphere). Reducing
the aperture from 90◦ to 86◦ provides sufficient clearance between the lobes to thicken them (Figure 4,
middle). The smallest aperture that still works is, obviously, 60◦ (Figure 4, right). The base circles of the
lobes are no longer incircles of the faces of a cube, but of a trigonal trapezohedron, whose faces are six
congruent rhombuses. In case of a 60◦-aperture, it degenerates into a uniform hexagonal prism.

Figure 3 : Sixfold rotoreflective symmetry: the cuts make 60◦ angles, intersecting in the center.

2 First Generalization of Lobke: Varying the Number of Lobes

A straightforward generalization of Lobke is to vary the number of lobes. With three lobes above and three
lobes below, there are six cuts, making angles of 60◦. In general, we can have k lobes above connected to
another k lobes below, giving rise to 2k cuts, making angles of 180◦/k. The aperture and cone fraction have
to be chosen appropriately. Figure 5 shows variants with four, eight, and ten lobes. The base circles are the
incircles of a k-gonal trapezohedron. Self-intersecting variants are also appealing (Figure 6).
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Figure 4 : Conical segments sharing cuts at 60◦ and varying aperture (left), 86◦ (middle), and 60◦ (right)

Figure 5 : Three Lobke variations, with four, eight, and ten non-touching lobes

3 Second Generalization of Lobke: Varying the Connections

Another generalization is obtained by connecting the conical segments in different ways. Note that two
conical segments can be connected smoothly in four ways (Figure 7). In Lobke and its first generalization,
all connections are of type 2, where the edge circles of the same radius meet each other at the joint, and
where the inside surface (toward the axis of the cone) of one segment meets with the outside surface of the
other (and vice versa). Type 1 is an inversion (dual) of type 2, where the meeting edge circles differ in radius,

Figure 6 : Three Lobke variations, with four (reminiscent of the Enneper surface), six, and eight
self-intersecting lobes
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and where the inside surfaces meet. Type 3 just extends the conical segment, that is, edge circles with the
same radius meet, and inside meets inside. Finally, type 4 is the opposite of type 3; here, the edge circles
that meet differ in radius, and the inside surface of one segment meets the outside surface of the other.

Type 1 Type 2 Type 3 Type 4
Figure 7 : The four ways to connect two conical segments smoothly

The question now arises as to which configurations of smoothly connected conical segments close
properly. Also self-intersection can be a concern. Ad hoc trial and error yielded some initial discoveries
(Figure 8), but ensuring that a design closes properly is not so easy.

Figure 8 : Two ad hoc closed designs by smoothly connecting conical segments in multiple ways

Because there are so many possibilities, a more systematic approach is desirable. To describe these
strips of connected conical segments in a convenient way, we extended the 3D Turtle Geometry of [5]. As
the turtle moves, it generates a strip, whose direction and normal vector equal the turtle’s direction and
normal vector. A new command CStrip(α, r, β) makes the turtle move on a cone whose axis makes an
angle α with the turtle’s ground plane (aperture 2α), having base radius r, turning over angle β along the
cone’s base circumference (β = 360◦ is a full turn). Figure 9 shows the results of three CStrip commands.
The turtle’s initial and final state are labeled O and F . The heading, port-side (left-hand), and normal vector
are labeled h, p, and n. The degenerate case α = 90◦ results in a turn on a disk (a cone with aperture 180◦).
Taking α = 0 is another degenerate case, resulting in a turn on a cylinder (a cone with aperture 0).

A strip of smoothly connected conical segments can then be described by a sequence of CStrip com-
mands. For instance, Lobke is described by the following six commands (the superscript denotes repetition):

(CStrip(α, r, β) ; CStrip(180◦ − α, r, β))3 (1)

where α = 43◦, r = 1, and β = 265.7◦. With 0 < α < 90◦, the strip from command CStrip(α, r, β)
curls up to the left (cf. Figure 9, left). By taking α beyond that range, the curl direction will vary: flat-left
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Figure 9 : Turtle that executed CStrip(45◦, 1, 270◦), CStrip(90◦, 1, 270◦), CStrip(0, 1, 270◦)

(α = 90◦), down-left (90◦ < α < 180◦), down-straight (α = 180◦), down-right (180◦ < α < 270◦), flat-
right (α = 270◦), up-right (270◦ < α < 360◦), up-straight (α = 0). Thus, for 0 ≤ α ≤ 90◦, the following
four commands (preceded by an index, for later reference) concern congruent cones with aperture 2α:

0. CStrip(α, r, β),

1. CStrip(180◦ − α, r, β),

2. CStrip(180◦ + α, r, β),

3. CStrip(360◦ − α, r, β),

Hence, these four conical strip segments are congruent. The shape of a strip constructed just from congruent
conical segments with fixed aperture, radius, and turn angle is then fully described by α, β, and the sequence
of indices of the commands in the numbered list above (0 through 3). From Formula (1) we see that in Lobke,
the strip alternates up-left and down-left segments. Thus, the index sequence for Lobke is

(0, 1)3 (2)

For the strips in Figure 8, the index sequences are respectively

(0, 1, 2, 3, 2, 1)3, with α = 46.27◦, β = 225◦ (3)

(0, 2, 1, 3, 1, 2)3, with α = 45◦, β = 270◦ (4)

In the latter strip, the turtle’s waypoints between CStrip commands, i.e., where adjacent segments join,
lie in a lattice, making it easier to ensure proper closure. Another way to find properly closed strips is by
experimentation: fix an index sequence, and vary α and/or β until proper closure occurs. Figure 10 shows the
index sequence of (3) with α = 36◦ and β stepping from 245◦ to 247◦. For a given index sequence, proper
closure is not always possible. This procedure resembles our approach to finding regular constant-torsion
polygons in 3D, as described in [4]. We do not have a general theory to achieve proper closure.

Figure 10 : The strip generated by the sequence (0, 1, 2, 3, 2, 1)3 with α = 36◦ and β = 246± 1◦, cf. (3)
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Figure 11 : GUI for conical segment strip explorer in Mathematica

We developed an interactive explorer of conical segment constructions in Mathematica (Figure 11).
You can set various parameters, such as α, r, β, and the strip’s width and thickness (these are the same for
all segments). A sequence of segments is interactively built up, where you select one of the four possible
continuations shown half transparent. As an aid to achieving proper closure, the distance between the initial
and final state is shown, taking difference in attitude into account.

4 Relationship with Skew Miter Joints

Further exploration resulted in numerous interesting shapes (Figure 12). At some point, it dawned upon us
that certain shapes were somehow familiar. Note that, in the images, the cones are approximated by a large
number of small straight steps. When reducing the number of steps in the approximation, a metamorphosis
takes place. Figure 13 shows this metamorphosis for the shape on the left in Figure 12. If the strip in the
straight-line approximation is thickened, so that thickness and width become equal, then the shape on the
left in Figure 14 is obtained. Similarly, the other shapes in Figure 12 correspond to shapes in Figure 14. The
one in the middle, a Hamilton cycle on the cuboctahedron, appears in a different orientation.

Figure 12 : Three properly closed constructions from conical segments (left: note the Möbius twist)

Verhoeff and Verhoeff

314



Figure 13 : The same shape, where the conical segments are approximated in fewer (3, 2, 1) steps

Figure 14 : Conical segments in Figure 12 approximated by straight trapezoidal beam segments

The shapes in Figure 14 are well-known to the authors. The shape on the left appears as one of the
two links in Hopeless Love I [7, Picture 14]. The two on the right appear in [3], in Figures 9 and 10 to
illustrate artwork involving skew miter joints, where the cut face does not lie in the angle bisector plane
(also [7, Pictures 19 and 11]). Thus, all designs involving trapezoidal beam segments can be converted into
constructions with conical segments. Some further designs obtained in this way are shown in Figure 15.

Figure 15 : Three more properly closed constructions from conical segments

5 Conclusion

We have explored several variations on the mathematical sculpture Lobke constructed from conical segments,
resulting in interesting new shapes and questions. We introduced a notation based on 3D Turtle Geometry
to describe shapes constructed from smoothly connected conical segments. We do not know under what
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conditions such strips are properly closed. These conditions seem to resemble the conditions for regular
constant-torsion polygons in 3D. There also turned out to be a surprising relationship with skew miter joints.

Related work Several other artists have created sculptures involving (near-)conical segments: Seat
of Wisdom and Circle Squared by Vic Pickett; Bronze Spheric Theme and Model for ‘Spheric Theme’ by
Naum Gabo; Snake, Berlin Junction, and other sculptures by Richard Serra (see [1]). However, we have
found no mathematical analyses of these sculptures. Borsalino and other sculptures by Henk van Putten use
cylindrical segments with a square cross section (see [2]). Arabesque XXIX by Robert Langhurst resembles
Lobke, but it has no hole and it is not a developable surface.

Future work A strip of conical segments can be viewed as a rotation-minimizing sweep along a
3D space curve composed of circular segments. This may provide another handle on proper closure. It
is possible to rotate the strip along its center line. In general, if all conical segments are congruent, then
after such a rotation, they need no longer be congruent (see Figure 12, left, and Figure 16, left), but they do
remain conical segments. In the special case of a strip that is as wide as it is thick (that is, with a square cross
section), there are further ways to connect them smoothly that we have not investigated (see Figure 16, right,
and [2]). Since a cone is a developable surface, a strip constructed from conical segments can be flattened
onto the plane. What strips can be flattened without self-intersection?

Figure 16 : Conical segments rotated about the center line (left two); square cross section (right two)
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