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Abstract 
 

In the Vega series of paintings by Vasarely, half spheres bulge out of the plane. We make an attempt to construct 

transformations that produce this effect. We take a close look at the two spheres in the painting Bull. We visualize 

parametric stereographic projection and show what parameter choices fit best for the two spheres in the painting. 

It remains an open issue if Vasarely had the same projection in mind. All the same, the interactive experimental 

tool can serve as a means to give insight into the mathematical idea behind the painting. 

      

 

 Bull  
 

During his “Vega” period (1968-1984), Victor Vasarely (1906-1997) produced a series of works with  the 

illusion of a sphere bulging outwards or inwards ⦋1,2⦌. The common characteristics of these paintings is 

that a regular grid is deformed to give the 3D effect. Different forms may appear in the squares, and the 

3D effect may be enhanced by the coloring of the squares. The paintings inspired mathematicians to 

create similar artworks ⦋3,4⦌,  by using some mathematical models and software to create the images. 

None of these papers investigated what methods Vasarely may have used to create his paintings. In this 

paper we take a close look at Bull, a painting from the series on exhibit at the Vasarely Museum in 

Budapest – see Figure 1.  

 

 
 

Figure 1: Bull by V. Vasarely (reproduction from the Vasarely Museum Budapest). 

 

The 3D effect of the Bull is very strong. Casual visitors as well as art historians talk about spheres bulging 

out of the 2D plane of the canvas.  We wanted, in a reverse engineering manner, to reconstruct the idea, 

and spot the transformation that Vasarely may have had in mind. In this way not only can one understand 
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the origin of the visual effect in this work, but also the piece of art may be a motivation to explore 3D 

mappings. In another article, we study of the color patterns of the painting ⦋8⦌.  
 

Parametric Stereographic Projection  
 

The most straightforward idea is to experiment with the inverse of stereographic mapping. We start from 

the flattened regular grid, placed in a horizontal plane spanned by x and y coordinate axes. We intersect 

this plane with a sphere in such a way, that the plane divides the sphere into two identical semi-spheres.  

For easy reference, we call the top and bottom of the sphere North and South Pole. Then we take the 

South Pole as projection center, and we project the grid points of the plane (within the circle which the 

sphere dissected) to the upper half of the sphere. Finally, we perform an orthogonal projection from the 

upper half of the sphere to the plane, and replace the original grid points by their images, see Figure 2 left.  

 

 

 

 

 

 

 

 

 
 

Figure 2: Stereographic projection using half sphere, where C = O and Q = S (a) and 

parametrized version, by CO = sz and QO =pz parameters (b). The grid point P is transformed 

to P2.  

 
The first part of the transformation - projecting the grid points to the sphere - is the inverse of the 

stereographic mapping ⦋5⦌,  which is normally used the other way around, creating a planar representation 

of a pattern on a sphere (typically, to gain a map of the Earth). The mathematical formulas to compute the 

coordinates on the sphere are easy to derive, by calculating where the line of projection intersects the 

upper half of the sphere. It is also evident that the image of a straight line will be a circle on the sphere, 

going through the South Pole, but not containing the South Pole itself.   The orthogonal projection of such 

a circle is an ellipse. Hence the transformation yields arcs of ellipses.  

  

The radius r and the x and y coordinates of the center of the sphere is defined by the original painting 

(with 500 pixel sides as reference for the numerical values given in pixels), thus the generation is 

straightforward. The result is shown in Figure 3.  In spite of the “similar effect”, Figure 3 does not show a 

good match with the original painting.  Hence, the hypothesis that half-spheres are visible in Bull, must be 

given up. Of course, this does not imply that Vasarely did not intend to draw half-spheres. 
 

We can experiment with two relaxations of the conditions of the projections: 

-  the center of projection may move from the South pole up or down along the diagonal of the 

sphere, indicated by parameter pz, 

- the center of the sphere may be pushed downwards (according to parameter sz) so that less than 

the half remains above the plane and is used as projection surface.  One has to assure that the 

intersection of the sphere and the plane remains a given circle, thus the change of sz implies the 

change of the radius of the sphere, see Figure 2b. 
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Figure 3: First reconstruction, based on stereographic projection as explained in Figure 2a.  

 
After some experimentation, we managed to get a much better – but still not perfect – match to the 

painting. Interestingly, for the two spheres in the painting different parameters provide the best match, 

namely: 

for the top sphere part:    r = 220, pz = -72, ps = -40, R =  223,6; 

for the corner sphere part:   r = 330, pz = -91, ps = -60, R = 335,4. 

 

As ps and pz are relatively small, we may still say that the shown forms are almost half and quarter 

spheres, and the center of projection is close to the center of the spheres. The result can be seen in Figure 

4. While Figure 4a suggest a good match with the artwork, in Figure 4b we see the deviation from it, by 

imposing the computer-generated transformation of the planar grid on the original painting by Vasarely.  
 

 

 
 

Figure 4: The reconstructed version (left), and its grid superimposed on Vasarely’s Bull (right).    
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Needless to say, with the mismatch we do not suggest that Vasarely’s work is not “perfect”. Actually, the 

small deviations from the strict geometric model make the effect of bulging more dramatic.   

 

 

Further Issues 

 
The above “reverse engineering” endeavor was triggered to find out what could be the “program”, the 

algorithm Vasarely used. He did not have access to programming means in his time, but he (or an 

assistant) could have plotted the transformed grid by calculating the coordinates.  After getting experience 

with producing several paintings with bulging spheres, he probably disregarded such an aid and could 

draw the transformed lines by hand.  It would be intriguing to find written or oral reference of the 

production process he actually pursued. Based on the following words by Vasarely in an interview ⦋6, p. 
69⦌, we suspect that he (or his assistant) created the transformed grids free hand: “The drawing became 

free, at least in the deformed parts, but still not excluding the possibility of the collective execution.”  

 

The above reconstructions were produced by a piece of software written in Processing ⦋7⦌, for the 

purpose. The software allows investigation of all other Vega paintings of similar principles, including 

where circles are placed inside the squares, and with other patterns than square grids. It would be also 

interesting to investigate whether in other Vega paintings, similar parameter sets produce a good, or even 

perfect match?   

 

Finally, we strongly believe that such hands-on investigations help the observers to understand the 

principle behind the painting, the craftsmanship of the maker, and also the underlying math.  Currently we 

are working on embedding the above outlined investigations into an educational application for visitors, 

to be available on-line ⦋9⦌, in cooperation with the Museum of Fine Arts Vasarely Museum in Budapest.  
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