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Abstract 
 

Borromean Rings are a simple yet interesting set of three rings intertwined so that if any one ring is cut and 
removed, then the other two rings separate into unlinked rings. Here we search for interesting ways to iterate 
Borromean Rings to obtain artistically interesting weavings upon a sphere which continue to retain this property. 
We then explore the symmetries and antisymmetries of the resulting constructions. 

  
In [1], the author iterated Borromean 
Rings to create the Rings shown in 
Figure 1. In this paper we start with the 
Borromean Rings rearranged into a 
spherical representation, Figure 4, thus 
transforming the image from planar to 
spherical. This concept was suggested 
by a reviewer of the previous paper. 
These constructions were motivated by 
Robert Fathauer’s paper Fractal Knots 
Created by Iterative Substitution and 
his artwork Infinity [3,4].  
 
          Borromean Rings 

 
Borromean Rings consist of three rings linked 
together and yet when any single ring is 
removed the other two rings become unlinked. 
Figure 3 shows the most common 
representation of the Borromean Rings. This 
name comes from their use in the Borromeos’ 
family crest in the fifteenth century. Although 
Peter Tait, in 1876, was the first 
mathematician to study these rings, the name 
Borromean Rings was not used until 1962 in a 
paper by Ralph Fox. Please see [5] for an 
excellent discussion of the history of 
Borromean Rings. Unsurprisingly, the 
discussion includes examples which precede 
their use by the Borromeo family. 

Figure 1. 
 Iterated Borromean Rings 

Figure 2. 
 Fathauer’s Infinity 

Figure 3.  
Borromean Rings 

Figure 4. 
 Spherical 

Representation of the 
Borromean Rings 
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Three Spherical Constructions 
 

Our goal is to iteratively splice copies of the planar representation of the Borromean Rings, shown in 
Figure 3, into each of the eight faces of the spherical representation, shown in Figure 4. Notice that the 
planar rings are colored correctly to splice into the top left face of Figure 4 so that the colors match the 
edges. However, we must transform these rings to correct the coloring before splicing into the top right 
face of Figure 4. We can transform the rings either by flipping the rings over as shown in Figure 5a or by 
reflecting as shown in Figure 5b. Although either could be used, we shall choose to use the mirrored. 
Thus, all planar rings are either copies of Figure 3, which we shall call positive, or Figure 5b, which we 
shall call negative. This choice has the desirable property that crossings are consistently of the form: 

light   >  medium  >  dark  >  light  
where “>” means crosses above. Notice that relative 
to the surface of this paper, the rings in Figure 4 do 
not cross over each other in this fashion. If, 
however, we view each crossing as if we are looking 
down onto the surface of an enclosed sphere toward 
its center, then every crossing is one of the three 
listed in the above inequality. Thus, for every 
construction below, the light loop is over the 
medium is over the dark is over the light when 
viewed relative to the surface of the sphere. 

 
We are now ready to cut the rings in Figure 4 at the midpoints of 

each edge and splice in four positively oriented Borromean Rings and 
four negatively oriented Borromean Rings to obtain the sphere shown in 
Figure 6. This now leaves choices on how to iterate this process.  

We can iterate this 
process, as shown in 
Figure 7, by repeatedly 
placing smaller and 
smaller copies of the 
Borromean Rings into the 
triple intersection portion 

of each triple of rings. In this situation, we continue to place 
smaller copies of the positively oriented rings into positive 
faces and negative into the negative. Naturally, the thickness 
of the rings must shrink in order to attach the next smaller 
set of rings. In theory, this process could be repeated 
indefinitely. As can be seen in the figures shown, this 
process is visually impractical beyond the second, or 
possibly third, iteration. 

Alternatively, as shown in Figure 8, one can place 
smaller copies of the Borromean Rings into each of the three double intersection portions of each triple of 
rings. This is the same process that was used to create Figure 1 above. Notice that this process flips the 
orientation for each successive set of rings. Thus, three negatively oriented Borromean Rings are placed 
in each positive face and vice-versa.  

Figure 5.  
a. Planar Flipped          b. Planar Mirrored

Figure 7. 
 Central Recursion 

Figure 6. 
 The First Iteration  
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Backing up, we note that the first iteration, shown in Figure 6, created triple intersections where 
the planar Borromean Rings were spliced onto the spherical Borromean Rings. We can eliminate these 
triple intersections by starting with wavy arcs in the spherical representation. This transforms Figure 8 
into Figure 9, a weaving without triple points. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

The Brunnian Property 
 

Borromean Rings are interesting because they are intertwined in such a way so that if any one ring is cut 
and removed, then the other two rings separate into unlinked rings, each of which is unknotted. This 
property is called the Brunnian Property in honor of Hermann Brunn. Thus, to verify that each of the 
above constructions is Brunnian, we must demonstrate two properties: First, that removing any one loop 
separates the remaining loops into disjoint loops; And, second, that each disjoint loop is unknotted. The 
first requirement follows from our requirement that the light loop always crosses over the medium which 
always crosses over the dark which always crosses over the light, keeping in mind that over is relative to 
the surface of the sphere. In Figure 10 we can see that the loops are disjoint when any one loop is cut and 
removed. And, since each iteration splices small circular rings onto the previous loop, as shown in Figure 
11, the iterations do not knot the individual loops.  

 
Symmetries of the 

Constructions 
 

Let us now consider the symmetries 
of the three constructions created 
above. We consider symmetries that 
preserve color and those that do not. 
If a transformation is almost 
symmetrical except that it inverts 
the crossings relative to the surface 
of the sphere, then we shall call it 
antisymmetrical.  

Figure 9. 
“Trillium Recursion on Waves” 

Figure 8. 
 “Trillium Recursion” 

Figure 11. 
A Single Loop is Unknotted

Figure 10. 
 Pairs of Loops are Disjoint
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We first consider the centers of faces, as shown in  
Figure 12. We see that we have three-fold rotational symmetry 
about the center of any face which cycles the three colors.  

 
We now consider the viewpoint from the midpoint of any 

side, as shown in Figure 13. We almost have bilateral color-
preserving symmetry in Figure 13. The left-side, a negative face, 
is almost a mirror of the right side, a positive face. The only 
portions that are not mirrored are the triple intersections. 
Likewise, we almost have color switching bilateral antisymmetry 
between the top hemisphere, above the median line passing 
through the light triple point, and the bottom hemisphere. Again, 
the triple intersections are the only portions to fail. Since the 
middle arc of every triple point is a backwards “S” curve, these 
constructions cannot have any bilateral symmetries. 
 
 Instead, each triple 
intersection is the center of a 
color-switching antisymmetric 
two-fold rotation. This 
antisymmetry switches two 
colors and inverts all crossing. 
This is equivalent to  
light > medium > dark > light 
switching to the equivalent 
statement light < dark < medium 
< light. Switching two colors 
must be antisymmetric since this 
will switch positive and negative 
faces and, thus, it must also 
invert every crossing.  

 
Looking down on any vertex of a face, as shown in Figure 14, we have a color-preserving  

two-fold rotation and we have an antisymmetric color-switching four-fold rotation. 
  
In summary, the three constructions shown in Figure 7, Figure 8, and Figure 9 have the same 

symmetries: Four axes of three-fold rotational symmetry through the centers of the faces; Three axes of 
antisymmetric four-fold rotations and two-fold rotational symmetry through the vertices of the faces; And 
six axes of antisymmetric two-fold rotations through the midpoints of the edges of the faces.  
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Figure 12. 
 Three-Fold Rotational Symmetry

Figure 13. 
  Antisymmetric 

Two-Fold Rotation 

Figure 14. 
 Two-Fold Rotational Symmetry &
Antisymmetric Four-Fold Rotation 

Burkholder

486


