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Abstract
Seifert surfaces are orientable surfaces, bounded by a mathematical knot. These surfaces have an intriguing shape
and can be used to produce fascinating images and sculptures. Van Wijk and Cohen have introduced a method to
generate images of these surfaces, based on braids, but their approach often led to surfaces that were too complex,
i.e., the genus of the surface was too high. Here we show how minimal genus Seifert surfaces can be produced, using
an extension of standard braids and an algorithm to find such surfaces.

1 Introduction

Although generally undesirable in fishing lines and earphone cables, knots are a beloved subject of mathe-
matical research. The simplest mathematical knot is the trefoil, shown in Figure 1. One puzzle related to
knots is to find an orientable surface with a boundary that coincides with the knot. In 1934, the German
mathematician Herbert Seifert described an algorithm to find such a surface for any knot [7], and these sur-
faces were named after him. A very clear introduction to Seifert surfaces can be found in The Knot Book
of Adams [1]. Seifert surfaces are interesting for multiple reasons. They do not only result in fascinating
sculptures and images, as made by Charles Perry, Robert Engman, and Robert Longhurst, they can also be
used to define the genus of a knot, as an invariant of its topological structure. The genus of a Seifert surface
is the topological genus of the closed, compact surface that results when a unit disk is glued along the knot.
The genus of a knot is defined as the minimal genus of all possible Seifert surfaces of that knot. Our goal is
to find and visualize Seifert surfaces that have this minimal genus.

Previous work Van Wijk and Cohen have presented a method to visualize Seifert surfaces [9, 10]. Their
method is based on the use of braids, which describe the knot as a sequence of crossings on a set of lines.
The endpoints of a braid are connected to those on the other side (see Fig. 1), but these connections are
usually omitted from the drawing. For a large number of knots, braid representations with a minimal num-
ber of crossings are available, thanks to Gittings [4]. This information can be conveniently retrieved from
KnotInfo [3], as well as a lot of other information, including the genus of the knot, evaluated by Rasmussen.
Seifert surfaces can easily be derived from braids. Every level (horizontal row) in the braid gives a disk;
every crossing in the braid corresponds to a twisted band connecting two disks. The collection of all disks
and bands forms a Seifert surface. This simple structure can also be used to compute the genus g of the
surface for a knot with one strand: g = (b−d +1)/2, where b is the number of bands and d is the number

Figure 1 : Knot diagram, braid diagram, Seifert surface and smoothed Seifert surface of the trefoil knot
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Figure 2 : Knot diagram, braid diagram, Seifert surface and smoothed Seifert surface of knot 52

of disks. Finally, the surface can be smoothed to generate a nicer visualization (see Fig. 1). The method
is implemented in a tool called SeifertView, which is freely available online [8]. Inspired by the aesthetic
appeal of Seifert surfaces, Bathsheba Grossman used this tool to produce wonderful sculptures [5].

Problem The classic braid notation is too limited to achieve braids with the minimal number of crossings
and Seifert surfaces with the minimal genus for all knots. Some knots, such as the trefoil, are no problem, but
difficulties arise with more complicated knots. Figure 2 shows knot 52 as an example. The minimal number
of crossings for this knot is five, as can be seen from the diagram, but the braid notation gives six crossings.
Also, the minimal genus of this knot is one, while the Seifert surface generated from its braid has genus two.
To solve this problem, we need to find a braid representation that results in a Seifert surface with a lower
genus. Because this is not always possible with classic braids, we use an extension: we allow crossings to
skip over one or more lines. This results in longer bands in the Seifert surface, skipping over one or more
disks. This extension has previously been described and used by Rudolph [6].

2 Solution

We produce minimal Seifert surfaces by first defining a set of moves to produce variations of braids, while
keeping the knot constant, and applying these moves repeatedly to search for minimal genus Seifert surfaces.

Moves We defined five basic moves to manipulate a braid. The cancel move decreases the number of
crossings in the braid and the genus of the resulting Seifert surface, the other moves are needed to facilitate
this move. Figure 3 shows each move applied to a braid. If the orientation of a crossing is not indicated,
this means both orientations are allowed for this crossing, as long as the orientation of such a crossing is the
same before and after the move.

The swap move allows to change the order of two neighboring crossings on disjoint pairs of lines. These
swaps are often necessary to enable other moves, as all moves are only defined on subsequent crossings.
The cancel move can be applied when two neighboring crossings on the same pair of lines are in opposite
orientations. In this case one line is consistently on top of the other, so both lines can simply be pulled
straight, eliminating both crossings. We apply this move only in one direction (from two crossings to zero),

Figure 3 : Five basic moves we applied to the braids
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to ensure termination of our algorithm, though it is an equivalence relation just like the other moves. The
shift move is more complicated: one line is effectively shifted between the others to change the order of
the crossings. These three moves are based directly on the theory of braid groups introduced by Artin in
1925, who showed that all possible equivalent classic braids can be produced with these three equivalence
relations [2]. Interestingly, we needed a fourth move, the flip move, which is conceptually similar to the
shift move. Both manually and experimentally we could not show that it could be deduced from the first
three, possibly because we only allow the cancel move in one direction. In the flip move, the middle line
is consistently on top of the others, and can therefore be flipped over to the other side. Finally, we defined
the lift move, which introduces longer crossings. As the name suggests, this move lifts one crossing over
the other, changing the order and making the lifted crossing longer. This does not affect the genus, but can
be useful if cancel can be applied afterward. The lift move is also applied in one direction only. Since the
original braid does not contain longer crossings, applying it in the other direction would just be undoing a
previous move. All moves can also be applied if there are lines in between the upper and lower lines drawn
here that are not involved in the crossings.

Algorithm The algorithm we designed is straightforward; all possible moves are tried out until either a braid
of the correct genus (according to [3]) is found or all possible options have been explored. Variations of the
knot are explored using breadth-first search. We first try all our moves on the initial knot, possibly multiple
times at different locations, and we store each new braid we find. When we found all braids that can be
generated by applying a single move to the initial knot, we try our moves on those variants to find all braids
that are two moves away from the original, and so on. We stop if we find a braid with the minimal genus.
Because none of the moves can be repeated infinitely often without producing braids already seen before,
the process will terminate even if we do not find a braid of the desired genus.

3 Results

Figure 4 shows a step-by-step manipulation of knot 81. The original braid has genus three. After applying
lift, cancel, lift and cancel, two long bands have been introduced and the genus of the surface is reduced to
one, which is the minimal genus of this knot. Note that the algorithm produced many more variants during
its execution, here we only show a trace that led to a Seifert surface with minimal genus.

Test set We applied our algorithm to a total of 798 knots with three up to eleven crossings. For the 249
knots with up to ten crossings, we found a Seifert surface with minimal genus for all except one. For knot
935, we could reduce the genus from five to two, but its minimal genus is one. We could solve 530 of the
549 knots with eleven crossings. For three of them, our moves were not sufficient to generate a braid with
minimal genus. For the remaining 16, our program ran out of memory and we have not been able to fix this
yet, due to time limitations. Running time ranged from seconds for easy cases to multiple hours for cases
where exhaustive exploration of the search space was unsuccessful.

Figure 4 : Step-by-step manipulation of knot 81
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Figure 5 : Examples of Seifert surfaces found by our algorithm

Figure 5 shows examples of the resulting surfaces. There is a large diversity in the shapes of the Seifert
surfaces, and although all are of minimal genus, they can still look quite complex. Judging hundreds of
Seifert surfaces separately is somewhat tedious. We found symmetric configurations to be attractive, and
implemented a scanning algorithm to detect these automatically. Some examples found in this way are 74,
923, 946, 11a186, and 11a333 (using knot names of KnotInfo [3]), which are shown in the bottom row of
Figure 5.

Future work We aim to apply our approach to a larger sets of knots, with 12 crossings or more. Also, we
want to understand why our approach fails in some rare cases and reconsider our set of moves. Currently,
just one solution is produced per knot, we aim to generate all solutions per knot, and pick optimal ones, using
different criteria. Furthermore, the braid representation can be extended further, for instance by allowing for
multiple twists per crossing, such that more compact representations can be achieved.
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