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Abstract. We consider the unbounded derived category of a specific non-

Noetherian ring Λ, and show that there are objects in D(Λ) that are not
Bousfield equivalent to any module. This answers a question posed by Dwyer

and Palmieri.

1. Introduction

Let k be a field, and consider the graded ring

Λ :=
k[x1, x2, x3...]

(x2
1, x

2
2, x

2
3...)

, where deg(xi) = 2i.

Let mod-Λ denote the category of Z-graded Λ-modules. We consider the un-
bounded derived category D(Λ). An object in D(Λ) has two gradings, one homo-
logical and one induced by the grading on modules.

The category D(Λ) is a compactly generated tensor triangulated category; in
fact it is a monogenic stable homotopy category, in the sense of [HPS97]. It has
arbitrary coproducts and products, and has a symmetric monoidal product −⊗LΛ−,
which we will denote − ∧−.

Given an object X of D(Λ), define the X-acyclics to be the collection of all
objects W with W ∧X = 0. We say two objects X and Y are Bousfield equivalent
if they have the same acyclics. This gives an equivalence relation on D(Λ). The
equivalence class of X is denoted 〈X〉, and called the Bousfield class of X. The
collection of Bousfield classes forms a complete lattice, called the Bousfield lattice.
(In Section 2 we give a more thorough background.)

The Bousfield lattice BLΛ of D(Λ) has been shown to exhibit interesting behav-
ior, particularly in contrast with the Bousfield lattice of the derived category of a
commutative Noetherian ring. For example, in [DP08], Dwyer and Palmieri show

that BLΛ has cardinality 22ℵ0 , although the homogeneous prime spectrum has only
one element. Also, the Boolean algebra BAΛ of complemented classes is trivial, and
as a consequence, every smashing localization is trivial [DP08, Cor. 7.5].

Define I(Λ) = Hom∗k(Λ, k) to be the graded vector space dual of Λ; this is also
a graded Λ-module. We consider graded Λ-modules as objects of D(Λ), concen-
trated at homological degree zero. The distributive lattice DLΛ is defined to be
the collection of Bousfield classes 〈X〉 such that 〈X〉 = 〈X ∧ X〉. For D(Λ), this
is a proper sub-poset of BLΛ, because 〈I(Λ) ∧ I(Λ)〉 = 〈0〉 6= 〈I(Λ)〉 [DP08, Cor.
4.12]. This implies that there is no Noetherian ring that stratifies D(Λ), in the
sense of [BIK11].
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The picture is very different if we consider a commutative (ungraded) Noether-
ian ring T and the unbounded derived category D(T ). In this context, there is
an isomorphism of lattices between BLT and the lattice of subsets of the prime
spectrum [Nee92, HPS97]. The category D(T ) is stratified by T [BIK11, Ex. 4.4],
and we have that BAT = DLT = BLT .

In the Noetherian context, it is the case that every object is Bousfield equivalent
to a module. Furthermore, the main results on BLΛ use Bousfield classes of modules.
This prompted Dwyer and Palmieri to ask [DP08, Question 5.8]: for a commutative
ring R, is every object in D(R) Bousfield equivalent to an R-module?

The purpose of this paper is to show that in D(Λ) the answer is no. In Section
3 we construct an object Tel in D(Λ), with homology groups Hn(Tel) ∼= I(Λ) for
all n ∈ Z, and use this to prove the following.

Theorem 1. There are objects in D(Λ) that are not Bousfield equivalent to a
module. Specifically, there are I(Λ)-acyclics that are not Tel-acyclics, and any such
object cannot be Bousfield equivalent to a module.

This appears as Theorem 3.5. We briefly sketch the proof here. First, we show
that Tel and I(Λ) are not Bousfield equivalent (Lemma 3.3). Then, using a spectral
sequence argument, and the fact that Tel has homology I(Λ) in each degree (Prop.
3.1), we show that a module is Tel-acyclic if and only if it is I(Λ)-acyclic (Lemma
3.4). A simple proof by contradiction then implies that not every object is Bousfield
equivalent to a module.

The proof is not constructive, and we have been unable to construct such an
object. The proof relies on the ring Λ being non-Noetherian, and graded so that
each graded piece is a finite-dimensional vector space. Furthermore, the proof uses
in a crucial way the fact that 〈I(Λ)〉 is the minimum non-zero Bousfield class in
BLΛ [DP08, Cor. 7.3]. This seems to be a very special property of D(Λ). In [Wol12]
we investigated non-Noetherian rings similar to Λ, and there we showed in Corollary
4.2.3 that if in the definition of Λ one replaces the field k with the p-local integers
Z(p) for some prime p, then the resulting derived category has no minimum non-zero
Bousfield class.

The outline of the paper is as follows. Section 2 includes background on Bousfield
classes and Bousfield lattices, which can be defined in any well-generated tensor-
triangulated category. Here we also discuss other categories, to put D(Λ) in context.
In Section 3 we construct the object Tel, and prove the theorem. The proof that
Hn(Tel) ∼= I(Λ) for all n ∈ Z is deferred to Section 4.

2. Review of Bousfield classes and examples

In this section we review the definition and basic properties of Bousfield classes
and the Bousfield lattice, and outline some of what is known about the Bousfield
lattice in several examples.

Let C be a compactly generated tensor triangulated category [BIK08, §8]; denote
the tensor product by −∧− and the unit by S. Recall that we defined the acyclics
of an object X to be all W such that W ∧ X = 0, and defined two objects X
and Y to be Bousfield equivalent if they have the same acyclics. The equivalence
class of an object X, under this equivalence relation, is denoted 〈X〉 and called the
Bousfield class of X. Most of the following general properties of Bousfield classes
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were first established by Bousfield [Bou79a, Bou79b] in the context of the stable
homotopy category. Further work was done in [Rav84,HPS97,HP99, IK11].

There is a partial ordering on Bousfield classes, given by reverse inclusion. So
we say

〈X〉 ≤ 〈Y 〉 if and only if W ∧ Y = 0 =⇒ W ∧X = 0.

The maximum Bousfield class is 〈S〉 and the minimum is 〈0〉. There is a join
operation, given by ∨

α

〈Xα〉 =

〈∐
α

Xα

〉
.

When C is a well-generated category, there is a set of Bousfield classes [IK11,
Thm. 3.1]. All the specific examples of tensor-triangulated categories we will
consider in this paper are compactly-generated, and hence well-generated. In any
poset with a join and a maximum element, we can define the meet of two elements
〈X〉 and 〈Y 〉 as the join of (the set of) all the lower bounds of 〈X〉 and 〈Y 〉. The
collection of Bousfield classes is then a poset with finite meets and arbitrary joins,
i.e. a complete lattice, called the Bousfield lattice.

Note that the tensor product gives another operation of Bousfield classes, by

〈X〉 ∧ 〈Y 〉 := 〈X ∧ Y 〉.
This is a lower bound, but in general not the meet. To address this, we can

restrict to the collection DL of classes 〈X〉 with 〈X〉 = 〈X ∧ X〉. One can show
that in this sub-poset, the meet of two classes is indeed given by tensoring. Since
the tensor product commutes with finite (resp. infinite) coproducts, this meet
commutes with finite (resp. infinite) joins, and this sub-poset is a distributive
lattice (resp. frame).

A Bousfield class 〈X〉 is called complemented if there exists a class 〈X〉c such
that 〈X〉 ∧ 〈X〉c = 〈0〉 and 〈X〉 ∨ 〈X〉c = 〈S〉. The collection of complemented
classes forms a Boolean algebra, denoted BA, and one always has BA ⊆ DL ⊆ BL.

Example 2.1. Iyengar and Krause [IK11] investigate the Bousfield lattice of a
tensor-triangulated category that is stratified by the action of a graded Noetherian
ring R. This general setting, developed in [BIK08, BIK11], building on [Nee92,
BCR97, HPS97] includes the unbounded derived category of a commutative Noe-
therian ring; the stable module category StMod(kG) of a finite group, where the
characteristic of k divides the order of the group, and then also the homotopy
category K(Inj kG) of complexes of injectives; and DG modules over a formal
commutative DG algebra with a Noetherian cohomology ring. They show that in
such a category the Bousfield lattice is isomorphic to the lattice of subsets of the
homogeneous prime spectrum of R, and BA = DL = BL.

Example 2.2. We will discuss the case of a commutative Noetherian ring more
explicitly. Let R be an (ungraded) commutative Noetherian ring, and D(R) the
unbounded derived category of (ungraded) R-modules. Let Spec R be the prime
ideal spectrum. Given a prime ideal p ∈ Spec R, let kp denote the residue field
(R/pR)p. Define the support of an object X in D(R) to be

supp(X) = {p ∈ Spec R | X ⊗LR kp 6= 0}.
It is not hard to show that supp(kp) = {p}. For any objects X and Y in D(R),

we have 〈X〉 = 〈Y 〉 if and only if supp(X) = supp(Y ) [HPS97, Thm. 6.1.5]. The
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isomorphism between BLR and the lattice of subsets of Spec R implies that every
object is Bousfield equivalent to a module. Specifically, for any X in D(R) we have

〈X〉 =

〈 ⊕
p∈supp(X)

kp

〉
.

Recently Dell’Ambrogio and Stevenson [DS11] have developed a similar notion of
support that applies to the derived category D(T ) of graded modules over a graded
commutative Noetherian ring T . They show that there is an isomorphism between
the Bousfield lattice and subsets of the homogeneous prime spectrum. Moreover,
this implies that every object in D(T ) is Bousfield equivalent to a module.

Example 2.3. In the stable homotopy category, Bousfield [Bou79a] showed that
the class of every finite spectrum is in BA, and the class of HZ is in DL but not in
BA. He also showed that the Brown-Comenetz dual I of the sphere has I∧I = 0, so
DL ( BL. Hovey and Palmieri [HP99] study finer structure of the Bousfield lattice
of this category.

The analog of a module is perhaps an Eilenberg-MacLane spectrum K(G, 0),
which has nth homotopy zero for n 6= 0. It seems unlikely that every spectrum is
Bousfield equivalent to an Eilenberg-Moore spectrum, but we haven’t pursued this
question.

It is in the context of these examples that we consider the graded ring Λ and
the derived category D(Λ), defined in the introduction. Neeman [Nee00] considered
a similar ring (with denominator generated by xii, for i ≥ 1, rather than x2

i ) and
showed the Bousfield lattice is large although the homogeneous prime spectrum is
trivial. Dwyer and Palmieri [DP08] considered a slightly more general ring, with
denominator generated by xni

i for some fixed ni ≥ 2, for each i ≥ 1. Theorem 1
actually holds in this generality, but we have restricted to the case where ni = 2
for each i, to simplify the proofs. See [Wol12, §6.1.3] for the general case.

In [DP08] the authors require the field k to be countable, but only in order to
guarantee that there is a set of Bousfield classes in D(Λ): the derived category of a
countable ring is a Brown category (i.e. Brown representability holds for homology
theories, see [HPS97, Thm.9.3.1]), and [DP01] shows that every Brown category
has a set of Bousfield classes. However, as discussed above, [IK11, Thm. 3.1] allows
us to remove this restriction on k.

The module I(Λ) plays a central role in [DP08]. As mentioned in the introduc-
tion, I(Λ)∧I(Λ) = 0, so DLΛ ( BLΛ. This is relevant, because it implies that there
is no Noetherian ring that stratifies D(Λ). Furthermore, Iyengar and Krause [IK11]
have defined a notion of support based on the distributive lattice DL, which makes
sense in any well-generated tensor-triangulated category. This generalizes the no-
tion of support defined above, and the support theory used in Example 2.1, but
may not be the right thing for derived categories of non-Noetherian rings like Λ.

Corollary 7.3 in [DP08] shows that for any non-zero E in D(Λ), we have that
〈I(Λ)〉 ≤ 〈E〉. This implies that BAΛ is trivial – the only complemented pair is 〈0〉
and 〈S〉. Indeed, given a complemented pair 〈X〉 and 〈X〉c, one of them must be
〈0〉 or else 〈0〉 6= 〈I(Λ)〉 ≤ 〈X〉 ∧ 〈X〉c.

We mention one final distinction among the Bousfield lattices in these examples.
A triangulated subcategory is called localizing if it is closed under coproducts.
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One can easily check that every Bousfield class is a localizing subcategory. Hovey
and Palmieri [HP99, Conj. 9.1] conjecture the converse, in the stable homotopy
category. In a category that is stratified by the action of a Noetherian ring, it is
indeed the case that every localizing subcategory is a Bousfield class [IK11, Cor.
4.5]. Recently, Greg Stevenson [Ste12], working in the unbounded derived category
of a non-Noetherian ring (specifically any absolutely flat ring which is not semi-
artinian), exhibited a localizing subcategory that is not a Bousfield class.

3. Tel and modules in D(Λ)

Now we begin to work towards proving the main theorem. Recall that we defined
Λ to be the graded ring

Λ :=
k[x1, x2, x3...]

(x2
1, x

2
2, x

2
3...)

,

where k is a field and deg(xi) = 2i.
First we establish some notation. For a Λ-module M = ⊕i∈ZMi, let M [n] denote

the shifted Λ-module with ith piece (M [n])i = Mi−n. We grade the chain complexes
in D(Λ) homologically, so objects in D(Λ) are bigraded, and the differential lowers
homological grading by one but preserves module gradings. Let Σ denote the
suspension in D(Λ), and Σn the n-fold suspension. This convention is used in order
to agree with the definition of D(Λ) given in [DP08].

If x ∈ Λ is a homogeneous element of Λ of degree r, then we write Λ
x−→ Λ[−r] for

the graded map of degree zero that is multiplication by x. However, for simplicity

we will often neglect to include the shift, writing only Λ
r−→ Λ. The same is true

for maps from a subquotient of Λ.
Let C in D(Λ) be represented by the following chain complex.

0 // Λ

(0)

x1

// Λ[−2]

(−1)

x1x2

// Λ[−8]

(−2)

x2x3

// Λ[−20]

(−3)

x3x4

// Λ[−44]

(−4)

x4x5

// Λ[−92]

(−5)

x5x6

// ...,

We have indicated the homological degrees below each module. One can check
that in homological degree −n we have Λ[4− 3 · 2n], when n ≥ 1.

Define f : C → Σ2C to be the following chain map.

0
0 //

0

��

Λ
x1 //

x3

��

Λ[−2]
x1x2 //

x1x4

��

Λ[−8]
x2x3 //

x2x5

��

Λ[−20]
x3x4 //

x3x6

��

· · ·

0
0
// Λ

x1

//

(2)

Λ[−2]
x1x2

//

(1)

Λ[−8]
x2x3

//

(0)

Λ[−20]
x3x4

//

(−1)

Λ[−44]
x4x5

//

(−2)

Λ[−92]
x5x6

//

(−3)

· · ·
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For notational simplicity, we will write the map f : C → Σ2C as follows.

0
0 //

0

��

Λ
x1 //

x3

��

Λ
x1x2 //

x1x4

��

Λ
x2x3 //

x2x5

��

Λ
x3x4 //

x3x6

��

Λ
x4x5 //

x4x7

��

Λ //

x5x8

��

· · ·

0
0
// Λ

x1

//

(2)

Λ
x1x2

//

(1)

Λ
x2x3

//

(0)

Λ
x3x4

//

(−1)

Λ
x4x5

//

(−2)

Λ
x5x6

//

(−3)

Λ
x6x7

//

(−4)

Λ //

(−5)

· · ·

.

One can check that with the grading deg(xi) = 2i, this is in fact a chain map.
Now define Tel to be the telescope

Tel = f−1C = colim

(
C

f−→ Σ2C
Σ2f−→ Σ4C −→ · · ·

)
.

Recall that, given a self-map X
f→ X in any derived category D(R), the telescope

f−1X is defined to be the cofiber of the map
∐
i≥0Xi

1−f−→
∐
i≥0Xi, where Xi = X

for all i and the map sends each summand Xi → Xi

∐
Xi+1 by (1 − f)(x) =

(x,−f(x)). This is a minimal weak colimit (see e.g. [HPS97, Prop. 2.2.4]), so for
all n we have

Hn(f−1X) ∼= lim−→(Hn(X)
H(f)−→ Hn(X)→ · · · ).

Proposition 3.1. For all n ∈ Z, there is a graded Λ-module isomorphism

τ : Hn(Tel)
∼−→ (I(Λ))[2].

We defer the proof to the next section. Next we must extend our definition of
I(−) from Λ to mod-Λ to D(Λ).

Definition 3.2. (1) Given a graded Λ-moduleM , define I(M) = Hom∗k(M,k),
the graded k-vector space dual. Since Λ is commutative, this has a right
Λ-module structure defined by (f.σ)(x) = (σ.f)(x) = f(x.σ) for f ∈ I(M),
σ ∈ Λ, and x ∈M .

(2) Let RHomk(−,−) denote RHom in the derived category of graded k-modules.
For any X in D(Λ), define I(X) = RHomk(X, k). Specifically, since k is
self-injective, given a chain complex X with Λ-module Xn in homologi-
cal degree n, I(X) is represented by the chain complex with Hom∗k(Xn, k)
in degree n. Since this is a Λ-module and the induced differentials are
Λ-module maps, we can think of I(X) as an object in D(Λ).

Note that if a Λ-module M is locally finite (i.e. finite-dimensional in each degree),
then I(I(M)) ∼= M . In particular, I(I(Λ)) ∼= Λ.

Lemma 3.3. 〈Tel〉 6= 〈I(Λ)〉.

Proof. Let K be the cofiber of f : C → Σ2C. We know that K is not zero, because
Proposition 3.1 implies that f is not an equivalence. The following are known about
C, K, and Tel [Rav92, Prop. 7.2.6(iii)]:

〈C〉 = 〈K〉 ∨ 〈Tel〉 and 〈0〉 = 〈K〉 ∧ 〈Tel〉.
Furthermore, [DP08, Cor. 7.3] shows that 〈I(Λ)〉 ≤ 〈X〉 for all nonzero X in

D(Λ).
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Suppose, towards a contradiction, that 〈Tel〉 = 〈I(Λ)〉. Then 〈Tel〉 ≤ 〈K〉, so
〈C〉 = 〈K〉 ∨ 〈Tel〉 = 〈K〉. This implies 〈0〉 = 〈C〉 ∧ 〈Tel〉, so C ∧ Tel = 0. This
would force C ∧ I(Λ) = 0.

But we will now show that C ∧ I(Λ) 6= 0. As remarked in [DP08, Lemma 3.4],
tensor-hom adjointness at the module level yields the following for all X and Y in
D(Λ).

RHomΛ(X,RHomk(Y, k)) = RHomk(X ∧ Y, k).

In particular, setting Y = Λ gives I(X) = RHomk(X, k) ∼= RHomΛ(X, I(Λ)) for all
X in D(Λ). Using this, we compute

I(C ∧ I(Λ)) ∼= RHomΛ(C ∧ I(Λ), I(Λ))

∼= RHomΛ(C,RHomΛ(I(Λ), I(Λ)))

∼= RHomΛ(C, I(I(Λ)))

∼= RHomΛ(C,Λ).

We have

H0(RHomΛ(C,Λ)) ∼= [C,Λ]0.

The algebra Λ is self-injective, because Λ is a P -algebra [Mar83, Thm. 13.12], so
[C,Λ]0 is homotopy classes of degree zero chain maps from C to Λ. There are
nontrivial such classes of maps.

· · · // 0 //

0

��

Λ
x1 //

1

��

Λ
x1x2 //

0

��

Λ
x2x3 // Λ // · · ·

· · · // 0 // Λ // 0 // · · ·

Therefore I(C ∧ I(Λ)) 6= 0, and C ∧ I(Λ) 6= 0. �

In Section 5 of [DP08], the authors asks if every object is Bousfield equivalent to
the direct sum of its homology groups. The last two results show that this is not
true. This was also shown recently in [IK11, Rmk. 4.8].

Lemma 3.4. A Λ-module, considered as an object in D(Λ), is Tel-acyclic if and
only if it is I(Λ)-acyclic.

Proof. Since 〈I(Λ)〉 is minimum among nonzero Bousfield classes, we know 〈I(Λ)〉 ≤
〈Tel〉. Thus if a module in D(Λ) is Tel-acyclic, it must be I(Λ)-acyclic. We will
show that if M is a module and M ∧ I(Λ) = 0, then M ∧ Tel = 0.

In [KM95, Thm. 4.7] the authors construct a strongly convergent Eilenberg-
Moore spectral sequence in the category of (Z-graded, so unbounded) DG modules
over a differential graded algebra. In order to use this spectral sequence, we must
temporarily neglect the grading on Λ. More specifically, let Λ be the same ring
as Λ but ungraded, and let D(Λ) be the derived category of ungraded modules
over Λ. There is a forgetful functor from chain complexes of Λ-modules to chain
complexes of Λ-modules, that takes acyclic complexes to acyclic complexes (and
non-acyclic complexes to non-acyclic complexes). Thus let U : D(Λ) → D(Λ) be
the induced forgetful functor, and write U(X) = X. Note that for any object X in

D(Λ), Hn(X) ∼= Hn(X).
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We can consider Λ as a differential graded algebra concentrated in chain degree
zero, and DG modules X and Y over Λ are just chain complexes of ungraded Λ-
modules, thus represent objects in D(Λ). Then the spectral sequence in [KM95,
Thm. 4.7] becomes

E2
p,q =

⊕
m+n=q

TorΛ
p (Hm(X), Hn(Y )) =⇒ Hp+q(X ∧ Y ).

Given a chain complex Q and a module N , let Q ⊗ N be the obvious chain
complex. Now suppose M is a module in D(Λ) such that M ∧ I(Λ) = 0 in D(Λ).
This says that given a projective resolution P of M in D(Λ), we have P ⊗ I(Λ)

acyclic, which is true if and only if P ⊗ I(Λ) is acyclic. This is true if and only if

P⊗I(Λ) is acyclic. But P is a projective Λ-module resolution of M if and only if P is

a projective Λ-module resolution of M [NVO04, §2.2], so we get M∧I(Λ) ∼= P⊗I(Λ)
acyclic in D(Λ).

Letting X = M and Y = Tel, the spectral sequence E2 page becomes

E2
p,q =

⊕
m+n=q

TorΛ
p (Hm(M), Hn(Tel)) = TorΛ

p (M, I(Λ)) = Hp(M ∧ I(Λ)).

Since M ∧ I(Λ) = 0, this collapses to zero and the spectral sequence is strongly
convergent, so we must have Hp+q(M ∧ Tel) = 0 for all p and q. By the same
argument as above, any projective resolution of Tel in D(Λ) giving M ∧ Tel 6= 0
would also give M ∧ Tel 6= 0, so we can conclude that M ∧ Tel = 0 in D(Λ), as
desired. �

Theorem 3.5. In D(Λ), there are objects that are not Bousfield equivalent to any
module. Specifically, every I(Λ)-acyclic object that is not Tel-acyclic cannot be
Bousfield equivalent to a module.

Proof. Suppose, towards a contradiction, that every object Y in D(Λ) is Bousfield
equivalent to some module, MY . Take X with X ∧ I(Λ) = 0. Then MX ∧ I(Λ) = 0.
Using Lemma 3.4, wee see that MX ∧ Tel = 0, so X ∧ Tel = 0.

This implies that 〈I(Λ)〉 ≥ 〈Tel〉. Since we already have 〈I(Λ)〉 ≤ 〈Tel〉, we
conclude that 〈I(Λ)〉 = 〈Tel〉. This contradicts Lemma 3.3. �

We have shown that 〈I(Λ)〉 < 〈Tel〉, so that there are I(Λ)-acyclics that are not
Tel-acyclic. It would of course be nice to construct such an object more explicitly.
One natural candidate may be Tel itself. However, the theorem tells us nothing,
since Tel is Tel-acyclic. This follows from Corollary 4.12 in [DP08], which shows
that I(Λ) ∧ I(Λ) = 0. If we set X = Y = Tel in the spectral sequence of Lemma
3.4, then I(Λ) ∧ I(Λ) = 0 implies Tel ∧ Tel = 0. Without Theorem 3.5, it is not
clear how to ascertain whether Tel is or is not Bousfield equivalent to a module.

4. Proof of Proposition 3.1

Our goal is to show that for all n ∈ Z,

Hn(Tel) ∼= colim
[
Hn(C) −→ Hn(Σ2C) −→ · · ·

] ∼= I(Λ)[2].

For concreteness, we will compute H−2(Tel), and then indicate the general case.
We will split the computation into several lemmas.
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Because of the shift, we are trying to compute

H−2(Tel) ∼= colim
[
H−2(C)

x2x5−→ H−4(C)
x4x7−→ H−6(C) −→ · · ·

]
.

We have

H−2(C) =
ker(x2x3)

im(x1x2)
[−8] ∼=

(x2, x3)

(x1x2)
[−8], and H−n(C) ∼=

(xn, xn+1)

(xn−1xn)
[4−3·2n], for n ≥ 2.

Define

M−2 =
(x3)

(x3) ∩ (x2, x4, x5, x6, ...)
[−8],

and in general

M−n =
(xn+1)

(xn+1) ∩ (xn, xn+2, xn+3, xn+4, ...)
[4− 3 · 2n],

and (omitting module shifts and simplifying denominators for readability) consider
the collection of maps

(xn+1)

(xn, xn+2, xn+3, ...)
= M−n

xnxn+3−→ M−n−2 =
(xn+3)

(xn+2, xn+4, xn+5, ...)
.

Lemma 4.1.

H−2(Tel) ∼= colim

[
(x2, x3)

(x1x2)

x2x5−→ (x4, x5)

(x3x4)

x4x7−→ (x6, x7)

(x5x6)

x6x9−→ · · ·
]

∼= colim
[
M−2

x2x5−→ M−4
x4x7−→ M−6

x6x9−→ · · ·
]
.

Proof. This uses the universal property of colim. For all n ≥ 2, we have surjective
projection maps

ψ−n : H−n(C) ∼=
(xn, xn+1)

(xn−1xn)
−→ (xn+1)

(xn, xn+2, xn+3, xn+4, ...)
= M−n.

These maps are compatible with the colimit maps; one can check that the fol-
lowing square commutes for all r.

(xr,xr+1)
(xr−1xr)

xrxr+3
//

proj

��

(xr+2,xr+3)
(xr+1xr+2)

proj

��
(xr+1)

(xr,xr+2,xr+3,...)

xrxr+3
// (xr+3)
(xr+2,xr+4,xr+5,...)

Thus we get maps H−n(C)→ colimMi, which induce Ψ : colimHi(C)→ colimMi.
We will show that Ψ is surjective and injective.

surjectivity: We will use standard properties of colimits (see e.g. [Mar83, App.
1.2, Prop. 7]). Take x̃ ∈ colimMi. So x̃ is represented by x ∈ M−r for some r.
Since ψ−r is surjective, we can pick a y ∈ H−r(C) such that ψ−r(y) = x. By the
definition of a colimit, this factors through Ψ. So, letting ỹ be the image of y in
colimHi(C), we get Ψ(ỹ) = x̃.

injectivity: Suppose Ψ(ỹ) = 0. Then ỹ is represented by y ∈ H−r(C) for some r.
We have a commuting diagram
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H−r(C) //

ψ−r

��

colimHi(C)

Ψ

��

M−r // colimMi

.

Therefore x = ψ−r(y) ∈ M−r maps to zero in colimMi. This means that either
x = 0, or x becomes zero eventually in the sequence M−r → M−r−2 → M−r−4 →
· · · . Suppose that x becomes zero at M−r−s, where it could be that s = 0. The
following square commutes.

H−r(C) //

ψ−r

��

H−r−s(C)

ψ−r−s

��

M−r // M−r−s

.

Since ψ−r(y) = x, this implies that the image of y in H−r−s(C), call it z, maps
to zero in M−r−s.

If z = 0, then we’re done – this implies that ỹ = 0. So consider the case that
z 6= 0, but ψ−r−s(z) = 0. Now, ψ−r−s is the map

H−r−s(C) ∼=
(xr+s, xr+s+1)

(xr+s−1xr+s)
−→ (xr+s+1)

(xr+s, xr+s+2, xr+s+3, xr+s+4, ...)
.

Therefore z ∈ (xr+s, xr+s+2, xr+s+3, xr+s+4, ...). But from H−r−s(C), the maps
encountered in colimHi(C) are precisely xr+s, xr+s+2, xr+s+3, xr+s+4, ..., so we are
guaranteed that eventually z will be sent to zero. This implies that ỹ = 0, so Ψ is
injective. �

Lemma 4.2.

colim
[
M−2

x2x5−→ M−4
x4x7−→ M−6

x6x9−→ · · ·
]

∼= colim

[
I

(
k[x1]

(x2
i )

)
[2] ↪→ I

(
k[x1, x2, x3]

(x2
i )

)
[2] ↪→ I

(
k[x1, x2, x3, x4, x5]

(x2
i )

)
[2] ↪→ · · ·

]
.

Proof. First consider M−4 = (x5)
(x4,x6,x7,...)

[−44]. As a Λ-module, this has generator

x5, in degree −44 + 25 = −12, and top degree element x1x2x3x5, in degree

−44 + 21 + 22 + 23 + 25 = 2.

Let xi denote the dual of xi; it has degree−deg(xi). As a Λ-module, I
(
k[x1,x2,x3]

(x2
i )

)
[2]

is generated by x1x2x3, in degree 2−21−22−23 = −12, and has top degree element
1, in degree 2. In fact, we can define a Λ-isomorphism from

(x5)

(x4, x6, x7, ...)
[−44] −→ I

(
k[x1, x2, x3]

(x2
i )

)
[2],

by sending x5 7→ x1x2x3.
Similarly, for all n ≥ 2, we have Λ-isomorphisms

M−n =
(xn+1)

(xn, xn+2, xn+3, xn+4, ...)
[4− 3 · 2n] −→ I

(
k[x1, x2, ..., xn−1]

(x2
i )

)
[2],

defined by sending
xn+1 7→ x1x2 · · ·xn−1.
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The degree of xn+1 is 4− 3 · 2n + 2n+1 = 4− 2n, and the degree of x1x2 · · ·xn−1

is

2−
(
21 + · · ·+ 2n−1

)
= 2− (2n − 2) = 4− 2n.

Now, we will show that the maps among the Mi’s become inclusions among the
duals. First, consider an example.

M−2 = (x3)
(x2,x4,x5,...)

[−8]
x2x5 //

∼=
��

(x5)
(x4,x6,x7,...)

[−44] = M−4

∼=
��

I
(
k[x1]
(x2

i )

)
[2] // I

(
k[x1,x2,x3]

(x2
i )

)
[2]

.

In the bottom left, the generator x1 goes up to the generator x3, then right to
x2x3x5, which gets sent down to

x2x3.(x1x2x3) = x1

in the bottom right, and all these maps are degree zero.
In general, we have

M−r = (xr+1)
(xr,xr+2,xr+3,...)

[4− 3 · 2r]
xrxr+3

//

∼=
��

(xr+3)
(xr+2,xr+4,xr+5,...)

[4− 3 · 2r−2] = M−r−2

∼=
��

I
(
k[x1,x2,...,xr−1]

(x2
i )

)
[2] // I

(
k[x1,x2,...,xr+1]

(x2
i )

)
[2]

.

The generator in the bottom left is x1x2 · · ·xr−1, which is sent up to the generator
xr+1, then over to xrxr+1xr+3 = (xrxr+1).xr+3. This gets sent down to

(xrxr+1).x1x2 · · ·xr+1 = x1x2 · · ·xr−1.

This shows that each map becomes the natural degree-zero inclusion under the
isomorphisms just described. �

Lemma 4.3.

colim

[
I

(
k[x1]

(x2
i )

)
[2] ↪→ I

(
k[x1, x2, x3]

(x2
i )

)
[2] ↪→ I

(
k[x1, x2, x3, x4, x5]

(x2
i )

)
[2] ↪→ · · ·

]
∼= I

(
lim

[
· · · → k[x1, x2, x3, x4, x5]

(x2
i )

[−2]
proj−→ k[x1, x2, x3]

(x2
i )

[−2]
proj−→ k[x1]

(x2
i )

]
[−2]

)
∼= I(Λ)[2].

Proof. Let Vj =
k[x1,x2,...,xj ]

(x2
i )

[−2]; it’s clear that I(Vj) = I
(
k[x1,x2,...,xj ]

(x2
i )

)
[2]. Since

these are locally finite, we have I(I(Vj)) ∼= Vj for all j. The definition of a sequential
colimit gives a certain exact sequence∐

I(Vj)
G−→
∐

I(Vj) −→ (colimI(Vj)) −→ 0,

which dualizes to an exact sequence

0 −→ I(colimI(Vj)) −→
∏

I(I(Vj))
I(G)−→

∏
I(I(Vj)).

One can check that in fact I(G) is the map used in the definition of the sequential
limit, so we have

limVj ∼= I(colimI(Vj)).
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Since limVj ∼= Λ, this shows that colimI(Vj) is the thing that dualizes to Λ. In
other words colimI(Vj) ∼= I(Λ). �

Proof of Proposition 3.1. Combining the three previous lemmas, we have an
isomorphism τ : H−2(Tel)

∼−→ I(Λ)[2]. Because the map f : C → Σ2C has degree
two, and sequential colimits are determined by their long-term behavior, it’s easy
to see that Hi(Tel) ∼= H−2(Tel) ∼= I(Λ)[2] for all even i.

Additionally, a computation of H−3(Tel), for example, would proceed as above,
but with all indices incremented/decremented by one. The result is the same:
H−3(Tel) ∼= Hi(Tel) ∼= I(Λ) for all odd i, and we have checked that this gives the
same module shift, two. Therefore, τ induces Hi(Tel) ∼= I(Λ)[2] for all i. �
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