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Abstract  
Boy’s surface is the simplest and most symmetrical way of making a compact model of the projective plane in R3 
without any singular points. This surface has 3-fold rotational symmetry and a single triple point from which three 
loops of intersection lines emerge. It turns out that there is a second, homeomorphically different way to model the 
projective plane with the same set of intersection lines, though it is less symmetrical. There seems to be only one 
such other structure beside Boy’s surface, and it thus has been named Girl’s surface. This alternative, finite, smooth 
model of the projective plane seems to be virtually unknown, and the purpose of this paper is to introduce it and 
make it understandable to a much wider audience. To do so, we will focus on the construction of the most 
symmetrical Möbius band with a circular boundary and with an internal surface patch with the intersection line 
structure specified above. This geometry defines a Girl’s cap with C2 front-to-back symmetry. 

 
Introduction 

In 1901, when Werner Boy found a way to immerse the projective plane smoothly in 3-space, with no 
creases or corners or singularities, it took the math world, including his advisor David Hilbert, completely 
by surprise. Some models of the projective plane, such as the cross cap surface or Steiner’s Roman 
surface (Fig.3, [10]), had been known for some time, but they had singular points with infinitely high 
curvature (Whitney umbrellas). It was widely believed that some singularities are unavoidable. Boy saw 
that they are not. Boy’s drawings of the surface are impressive (equations took another 75 years to find); 
however, the surface remains a challenge to visualize. This surface comes in two mirror-image variations 
that cannot be smoothly transformed into one another via a regular homotopy.  Figure 1a shows what we 
call the right-handed version, because when we puncture this surface it becomes regular homotopically 
equivalent to a right-twisting Mӧbius band. 

But could there be another way of smoothly immersing the projective plane in 3-space with such a 
simple intersection set? Or did Boy find the only way? Certainly none seemed to be known to experts in 
the field. And it is known [8] that if we allow the surface to pass through itself, creating more – or 
different – self-intersections, then any projective plane in 3-space is smoothly deformable to Boy’s 
surface or its mirror image. Hence it seems reasonable to expect there to be no others with this 
intersection set. 

In attempting to prove that was the case, Goodman and Kossowski [4], surprisingly, happened upon 
another immersion with quite different properties. While it is now clear that Apéry knew of it and refers 
to it in his lovely book Models of the Real Projective Plane [1], it had gone unnoticed in the mathematical 
community, perhaps because there was not a smooth model of it. It is this alternate surface – dubbed 
Girl’s surface – that we explore here. 

 
Models of the Projective Plane 

Any model of the projective plane in 3-dimensional space must intersect itself [9]. It is the structure of the 
intersection lines that we focus on. We start from the simplest possible intersection set for a smooth 
model of the projective plane in 3-dimensional space. It is known [2] that this intersection set must 
comprise a triple point: a point that locally appears as the intersection of three planes (Fig.1b). Six 
intersection-line branches emanate from this point. They form three loops circling back to the triple point. 
If we do this in the simplest and most symmetrical way (Fig.1c), we obtain the complete intersection set 
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for Boy’s surface. Now the question arises: Could there be another model of the projective plane with a 
connected intersection set and only one triple point that is homeomorphically distinct from Boy’s surface, 
which means that there is not a one-to-one correspondence between the two models for every surface 
region bounded by an intersection line? The answer is yes, but there is only one other way: Girl’s surface. 
It turns out that for this surface, the neighborhood along one of the three intersection loops is twisted 
through 180° (Fig.1d). 

    
                 (a)                                     (b)                                       (c)                                       (d) 

Figure 1:  (a) r-Boy Surface; (b) triple point; (c) r-Boy  and (d) l-Girl intersection-line neighborhoods. 
 

Constructing Girl’s Surface – Starting from the Intersection-line Structure 
Tracing around the rims in Figure 1c, we find four complete circuits that close back onto themselves. The 
three of them that lie inside the intersection-line lobes can be readily filled in with disks. The fourth one 
winds around the outside in a rather complicated fashion, but it too can be extended and capped off 
without introducing any new self-intersections (Fig.2a). The result is Boy’s surface. This is almost the 
reverse of Séquin’s construction (Fig.5 [10]), which results in the creation of a triple point by filling in a 
circular hole with opposite points identified – as opposed to starting with the triple point and working 
outwards along the intersection lines. 

But what happens if we connect one or more of the intersection-line lobes with a half-twist back to 
the triple point as shown in Figure 1d for the bottom lobe?  Tracing around the rim of this figure, we can 
see that there are still four complete circuits; two of which (the two upper ears) can still be readily capped 
off with local membranes. The other two circuits present more of a challenge. However, it is still possible, 
as indicated in Figure 2b. And the result is Girl’s surface (Fig.2c). It is homeomorphically distinct from 
Boy’s surface: There, each of the three intersection-line loops bounds a simple disk on the surface. This is 
not the case for Girl’s surface: The loop with the half-twist does not bound a disk on the surface! The 
special behavior of this lobe also destroys the 3-fold symmetry of Boy’s surface. For more models of 
Girl’s surface, see [6]. 

      
                         (a)                                                    (b)                                                 (c)                                  

Figure 2:  Capping off the rim circuits: (a) of Fig.1c,  (b) of Fig.1d;  (c) the resulting l-Girl surface. 
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384



As mentioned above, every smooth model of the projective plane can be transformed by a regular 
homotopy into either a right-handed version of Boy’s surface (Fig.1a) or into its mirror image (l-Boy). So, 
what might such a deformation sequence look like for Girl’s surface? Figure 3 shows a few crucial stills 
from an animation of the complete transformation of an r-Boy surface into an r-Girl surface. It shows the 
point where two intersection lines bulge out and touch and form two new circuits – a small local one, and 
large, contorted one combining the remnants of the two merging loops.  
 

 
                          (a)                                                     (b)                                                    (c)                                  

Figure 3:  Deformation of the intersection neighborhood from Boy’s surface to Girl’s surface 
 
This merging and recombination of intersection loops is shown schematically on the domain map of the 
projective plane (Fig.4a-d), which can be seen as a disk on which opposite points are identified (i.e., 
connected by going through infinity). The rainbow coloring shows this implied connectivity and indicates 
which perimeter points are connected to one another. The darker lines on these diagrams mark the three 
intersection-line loops, color coded to match the loopy tubes in Figure 5a. Every intersection line element 
shows up twice, because two different points of the surface meet in those lines. The triple point, marked 
with a black dot shows up three times. Also shown in these diagrams in white dashed outlines is a Mӧbius 
band embedded in the Boy surface. It mostly follows the intersection lines, and it almost touches the triple 
point three times. This Mӧbius band is also shown in the intersection-line neighborhood model (Fig.5a). 
As shown, it makes three left-handed 180° flips, which makes it regular homotopically equivalent to a 
simple right-twisting Mӧbius band; this shows that we are dealing here with an r-Boy surface. 
 

    
                   (a)                                      (b)                                       (c)                                     (d)                        

Figure 4:  Intersection-line loops shown on the domain map of the projective plane:  (a) Boy surface;  
(b) before and (c) after the merger of the red and green loops; (d) cleaned-up pattern for Girl surface. 
(To know what orientation of surface this represents, one would have to specify in what direction the 

Mӧbius flips occur as one steps across the perimeter.) 
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This topological change is made possible by letting one surface region pass through a saddle shape 
formed by a different surface region, as schematically indicated in Figure 5b. Once the intersection 
neighborhoods have separated, we have again three loops that can be simplified and forced into a more 
symmetrical configuration. However, it turns out that one of the newly formed loops (the bottom one) 
now has 180° twist in it. Moreover, the chirality of this configuration has changed (Fig.5c) and the three 
“propeller blades” of Figure 1c are now twisted in the opposite sense! Thus the result of the described 
regular homotopy move is a mirror image of what is shown in Figure 1d. In other words, when we cut and 
twist one of the intersection lobes as indicated in Figure 1d, and then complete the surface by capping off 
all circuits with individual disks, we obtain a left-handed Girl surface, which could then be transformed 
through the regular homotopy move described above into a left-handed Boy surface.  
 

      
                           (a)                                           (b)                                            (c)                                                

Figure 5:  (a) r-Boy intersection neighborhood with embedded Mӧbius band.  (b) Detail of the saddle 
switch-over. (c) r-Girl intersection neighborhood with embedded Mӧbius band; (the neighborhood bands 

of the red loop have been eliminated to better show the two branches of the Mӧbius band in that loop). 
 
It is natural to ask: What will happen if in Figure 1d we twist not just one lobe through 180°, but perhaps 
two, or all three of them – or if we apply the loop-combining, regular homotopy move shown in Figure 3 
to the intersection neighborhood more than once? When brutally twisting intersection-line loops, we first 
have to wonder whether we still obtain models of the projective plane, and, if the answer is yes, what the 
resulting intersection-line structure looks like. When applying additional regular homotopy moves, we are 
at least sure that we maintain a valid model for the projective plane; we then only have to investigate 
whether additional intersection-line loops, and perhaps even additional triple points, will be generated.  

 The full discussion of all these issues is beyond the scope of this paper. Answers can be found in [4] 
and [5]. The argument that Girl’s surface is the only alternative emerges from of a case-by-case study of 
other possibilities to connect the arcs in Figure 1b. The basic approach is as follows. A formula of 
Izumiya-Marar [6] tells us that the Euler characteristic of any smooth space model of the projective plane 
with a single triple point is:  χ (projective plane)  +  # triple points  = 1 + 1 = 2. Taking the triple point as 
one vertex and the intersection-line arcs as three edges, we see that the remainder of the surface must be 
four disk faces so that  χ = V – E + F = 1 – 3 + 4 = 2. Therefore, after the arcs are connected, the rim of 
the neighborhoods must consist of exactly four complete circuits, and we must be able to cap off each 
circuit with a disk in such a way that we create no new self-intersections of the surface. Each case is 
examined: whether opposite or adjacent arcs are connected, whether the connections are made with or 
without twists, and with or without knots. Only by connecting the arcs as in Boy’s surface or as described 
above for Girl’s surface, will we get exactly four complete circuits on the rim that can be capped off by 
disks without creating any new self-intersections. 
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Open Symmetrical Models of Boy Cap and Girl Cap 
If we puncture Boy’s surface (Fig.1a) at its center of 3-fold symmetry and then open that hole into a large 
circular rim, we obtain a Boy cap, which is topologically equivalent to a Mӧbius band.  If we expand that 
rim into a large “equator” and then distribute the six tunnel entrances symmetrically above and below this 
equatorial plane, we can obtain a surface with 6-fold D3 symmetry, where the three C2 rotation axes lie in 
that equatorial plane (Fig.6a). This open structure has the advantage that there are no features hiding 
inside a closed shell. Every part of this surface is clearly visible from one side or the other; thus it is easier 
to understand.  

Understanding of such a surface can be enhanced even further by making a paper model. To make 
this task as easy as possible, we have designed a “cubist” version in which most vertices lie on an integer 
grid, and most faces join with 90° angles (Fig.6b). A discrete 6-band rainbow coloring has been applied, 
so that it is easy to see how opposite points on the equatorial circle connect to one another via a helical 
path through the tunnels of the Boy cap. The whole paper model has been constructed from six copies of 
the template shown in Figure 6c. These templates will be provided in the form of auxiliary material with 
the on-line proceedings.  

     
                                   (a)                                                                 (b)                                         (c)                            

Figure 6:  Symmetrical, open-rim r-Boy cap: (a) virtual B-spline model, (b) paper model, (c) template. 
 
An open model is even more valuable for Girl’s surface, so that the special twisted lobe can be inspected 
from both sides. Such a Girl cap is depicted in different ways in Figures 7a-c. The 3-fold symmetry has 
been broken because there is only one twisted intersection loop. However, we can at least preserve one of 
the C2 symmetry axes – the one that goes through that twisted lobe. 

      
                             (a)                                                    (b)                                                   (c) 

Figure 7:  Symmetrical, open-rim Girl cap: (a) virtual subdivision model, (b) with intersection-line 
neighborhood removed,  (c) a physical model made on a Fused Deposition Modeling machine. 
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We are also in the process of trying to make a “cubist” paper model for a Girl cap. However, we find it 
rather difficult to capture the tight helical twisting of the surface, as it squeezes through the twisted 
intersection loop, using only 90°-angular facets; it leads to a whole lot of un-attractive and confusing 
“stair-casing.” Thus, making good visualization models is clearly an art. On the other hand, successfully 
realized models often emerge as art objects in their own right. We continue our efforts to come up with an 
easy-to-build and attractive paper model for the fascinating, but somewhat elusive Girl surface. 
 
 

Summary and Conclusion 
There are two homeomorphically different compact smooth models of the projective plane that have only 
a single triple point and a connected set of intersection lines. They fall into four different ambient isotopy 
classes. Figure 8 summarizes how they relate to one another. It is a challenging mental exercise to try to 
understand the connectivity of these surfaces and the transformations that deform one into another. 

 
Figure 8:  Different simple, smooth, compact models of the projective plane and their relationships. 
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