
AA Weaving

Abdalla G. M. Ahmed
abdalla_gafar@hotmail.com

Abstract
A novel algorithmic method for weaving design is presented, inspired by the recently discovered AA Fractals. The
method is capable of producing a weaving pattern from any binary sequence or pair of sequences. All generated
patterns can be woven in the simplest (4-shaft) dobby looms. An algorithm for generating input binary sequences is
also presented, and the sequences produced by this algorithm generate patterns which resemble AA Patterns.

1 Introduction

The fact that woven fabrics are uniform meshes of threads grabs the interest of mathematicians. There have
been many attempts for employing mathematical concepts to develop algorithmic weaving design techniques.
For example, Ada Dietz in her 1949 monograph [8] described a method for using binomial expansions to
write the threading draft. Great efforts were made by Ralph E. Griswold, both in collecting literature of
this kind [11], and in introducing new mathematical methods for generating weaving patterns. He suggested
methods based on Cellular Automata, L-Systems, Fractals, Chaos, and some other known mathematical
patterns. He started collecting his work in a book [10], but he left this world before completing his effort.

In this paper we introduce a new algorithmic technique for designing weaving patterns, inspired by
AA Outlines: a recently discovered fractal form related to AA Patterns [7]. Unlike the fractal sequence
methods suggested by Griswold [12], the technique we are going to see works ‘natively’ in simple looms,
without any adaptations, and is still capable of producing rich weaving patterns thanks to the inherent
fractal structure of the underlying concept. We start by providing an essential background about weaving in
Section 2. In Section 3 we describe AA Outlines, and build on them a new concept, AA Bitmaps, which
will serve the basis of the new weaving technique discussed in Section 4. Finally, we give a conclusion in
Section 5, along with recommendations for future work.

2 Weaving Essentials

A woven fabric is made of threads running ‘along’, called ‘warps’, and threads running ‘across’ called
‘wefts’. At each intersection of threads, looking from one side of the fabric, either the warp or the weft runs
above. A device called ‘loom’ is used to weave the fabric, row by row. The loom has a mechanism to raise
all warp threads meant to run above in the current row, lower those which are to stay below, and pass the weft
thread across. If a “warp is above” is encoded as ‘0’, and a “weft is above” encoded as ‘1’, then the whole
fabric can be abstracted as a monochrome bitmap, which is essentially a 2D matrix with binary entries. All
(single) woven fabrics can be seen as monochrome bitmaps, as illustrated in Figure 1.

But are all monochrome bitmaps ‘weavable’? Here we face two practical problems:

1. Weaving an arbitrary bitmap means that the loom needs to control each individual warp thread in
every row. When this is translated into mechanical/electronic control, it means very sophisticated, and
therefore very expensive looms. The loom capable of controlling individual warps is called “Jacquard
loom”.

Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture

263

(a) (b) (c)

Figure 1 : Bitmaps of common kinds of woven fabrics: (a) plain weave (b) Oxford weave, and (c)
twill weave. The number of distinct rows and columns are 2, 2, and 4, respectively.

2. A long run of zeros or ones in the bitmap would translate into a thread that ‘floats’ on the surface for a
substantial length without interweaving with the crossing threads. Such a thread is evidently prone to
snagging and tearing, and causes some looseness in the fabric. One way to solve this problem is using
a technique called ‘double weaving’, where two sets of warps and wefts are used, as if two fabrics
are interwoven together. Once again, this technique is costly, and generates thick fabrics (two layers)
which are not suitable for all purposes.

Given the first problem, it is desirable to keep the input bitmaps ‘simple’. What do we mean by simple? A
good measure of simplicity is the number of distinct rows and columns in the bitmap, as these are directly
reflected in the design complexity of looms, and the effort required to setup and operate them. The idea is to
control warp threads in groups, rather than individually, and the corresponding loom is called “dobby loom”.
The number of distinct rows indicates (but is not equal to) the number of groups of warps; or mechanically
speaking, the number of ‘shafts’ in the loom. Obviously, the more shafts we have, the more expensive is the
loom, and the more labor intensive is its setup.

So simplicity of weaving bitmaps is desirable from the manufacturer point of view; but visual appeal
and richness are also highly desirable from the end user point of view, and between these two ends emerges
the art of ‘weaving design’. It can be described as the process of finding or creating bitmaps which exhibit
visual beauty and/or any other desirable features, while still keeping the number of distinct rows and/or
columns to the minimum. This is not a simple job, indeed, and as far as I know there is no currently available
deterministic procedure to coordinate these two objectives. Thus, this function remained primarily a matter
of art; although there are some helpful software tools.

It is worth mentioning that the traditional weaving design involves the very same bitmap concept we
explained here, referred to as a ‘draft’; but it also involves two narrow horizontal and vertical bitmaps, and
one more small bitmap at the corner, as shown in the examples in Figure 2. The three auxiliary bitmaps
represent ‘handles’ that can be tuned, totally independently, to control the draft; which is just another clue
about the complexity of weaving design. There in another design of looms which replaces the treadles and
the tie-up with a drum fitted with wedges to select which shafts are lifted in each row; much like a music
box. For further details about traditional weaving design the interested reader is referred to the articles by
Andrew Glassner [9] as a good starting point. These articles also explain how to develop software tools for
weaving design.

3 AA Outlines

“AA Outlines” is a recently discovered fractal form related to AA Patterns [7]. Like most other fractal forms,
they are defined in a very simple way [13]; as described in Algorithm 1 in the following page. Depending on
the input binary sequences {X,Y}, Algorithm 1 can generate very complex structures. Note that the same
binary sequence can be used to label rows and columns.

Ahmed

264

Figure 2 : Two examples of weaving drafts, along with their threading plans (above), treadling
sequences (at the right), and tie-ups (at top-right corner). Retrieved from www.handweaving.net
[1, 2]. The gray pixels (red in electronic version of this paper) represent warp threads, which run
vertically in the diagram. Each row of the threading plan represents a physical shaft in the loom,
and each warp thread is attached to a single shaft, via a so-called heddle, as indicated by the set
pixel in the corresponding column of the threading plan. Each shaft is connected to one or more
treadles (pedals), and the ‘tie-up’ indicates which shafts are connected to which treadles. The
treadling sequence indicates, for each row, which treadle is pressed to lift the connected shafts.
Lifting shafts will raise all threads attached to them, opening a ‘shed’ for passing the weft thread.

Algorithm 1 Drawing AA Outlines.
1. Start with a uniform 2D grid of points. See Figure 3(a).

2. On the first row join every other pair of points, creating a dashed line. See Figure 3(b). We label this
row 0 if the first and second points are joined and 1 if the second and third points are joined.

3. Use a binary sequence Y to label each row 0 or 1 and create the appropriate dashed line. See
Figure 3(c).

4. Similarly use a binary sequence X to label each column 0 or 1 and create the appropriate dashed line.
See Figure 3(d).

0 0
1
0
0
1
1
1
0
0
1
1
1
0
0
1
1
0

Y

=

0
1
0
0
1
1
1
0
0
1
1
1
0
0
1
1
0

01011100011100110

Y

=

X =

(a) (b) (c) (d)

Figure 3 : Steps to build an AA Outline. Numbers indicate whether each dashed line begins with
a dash (0) or a gap (1) relative to the edge.

AA Weaving

265

One important property of AA Outlines is that at every point in the underlying grid there is exactly
one dash running vertically and one running horizontally. See Figure 3. Dashes form chains which either
surround closed regions, or run until they meet the edges of the pattern. In both cases each chain of dashes
splits the pattern area into two distinctly separated regions, which makes the overall outline lend itself to the
even-odd style of painting [4], as illustrated in Figure 4. These even-odd paintings are binary by nature, and

0
1
0
0
1
1
1
0
0
1
1
1
0
0
1
1
0

01011100011100110

Y

=

X =

0
1
0
0
1
1
1
0
0
1
1
1
0
0
1
1
0

01011100011100110

Y

=

X =

Figure 4 : The outlines of Figure 3(d) painted in an even-odd fashion to make an AA Bitmap.

can be represented by monochrome bitmaps, with pixels having their corners at the underlying grid points.
We will call such bitmaps AA Bitmaps.

Let us analyze AA Bitmaps to find out how they can be generated algorithmically. The fact that we are
dealing with binary values suggests using modulo 2 arithmetics, in which value transitions are easy to detect
by addition:

0 + 0 = 1 + 1 = 0 , (1)

0 + 1 = 1 + 0 = 1 ; (2)

so adding similar values yields 0 and adding different values yields 1. Inspecting the first (bottom) row
of pixels in Figure 4 reveals that vertical dashes in the painted outline, or 0’s in sequence X, mark color
transitions in the bitmap, and 1’s make runs of pixels of the same color. In modulo-2 this translates into

X[i] = R1[i− 1] +R1[i] + 1 , (3)

where R1 is a binary vector representing pixels in the first row. But by design the same set of dashes appear
in every other row, which means that all odd rows are either copies or negatives of the first row. Similarly,
all even rows are copies or negatives of the second row. The whole bitmap is therefore made up of only
four distinct rows. Further, note that where there is a dash in odd rows there is always a gap in even rows,
and vise-versa; so a color transition in one row matches no-transition in the adjacent rows, and vise-versa.
We conclude that the four distinct rows can easily be generated given only one of them. Which of the four
reference rows is used in each row of the final bitmap depends only on whether the vertical index of the
bitmap row is odd or even, and on the color of the first pixel in that row. By symmetry, all the arguments
made about rows apply to columns as well, so

Y[i] = C1[i− 1] +C1[i] + 1 , (4)

where C1 is a binary vector representing pixels in the first column, and so on.
The foregoing analysis can easily be translated into steps for generating AA Bitmaps, given the first

row and and the first column. This time (1) and (2) will be used to apply value transitions besides detecting
them. Algorithm 2 has the details, and Figure 5 shows example results. The relations (3) and (4) make
it also possible to use {X,Y} directly to generate AA Bitmaps, as shown in Algorithm 3. The simple
copy-and-invert operation in Algorithm 3 makes it possible to work this algorithm by hand. It also gives us
new insight in the structure of AA Bitmaps; that on moving from row to row half of pixels are inverted and
half of them remain unchanged.

Ahmed

266

Algorithm 2 Generating an AA Bitmap M from two binary vectors {R1,C1} which represent the first row
and the first column. Indexes start at 1, and all additions are modulo 2. Note that R2, R3, and R4 are not
necessarily the second, third, and fourth row in the bitmap.

1 . P o p u l a t e t h e o t h e r t h r e e d i s t i n c t rows :
S e t R2 [1] = R1 [1]
S e t R3 [1] = R4 [1] = R1 [1] + 1
For j = 2 t o l e n g t h o f R1

S e t R2 [j] = R2 [j −1] + (R1 [j −1] + R1 [j]) + 1
S e t R3 [j] = R1 [j] + 1
S e t R4 [j] = R2 [j] + 1

2 . P o p u l a t e b i tmap M wi th t h e a p p r o p r i a t e rows :
For i = 1 t o l e n g t h o f C1

I f C1 [i] e q u a l s C1 [1] t h e n
I f i i s odd t h e n S e t M[i] = R1
e l s e s e t M[i] = R2

e l s e
I f i i s odd t h e n S e t M[i] = R3
e l s e s e t M[i] = R4

(a) (b) (c)

Figure 5 : AA Bitmaps generated by Algorithm 2 taking input from (a) Fibonacci word (sequence
A003849 in [3]), (b) Thue-Morse sequence (sequence A010060 in [3]), and (c) Fibonacci word
for R1 and Thue-Morse for C1.

4 AA Weaving

The concept we have seen in the previous section is capable of converting any binary sequence (or pair of
sequences) into a monochrome bitmap; hence a weavable pattern. How good are these bitmaps as weaving
designs, considering the aspects we talked about in Section 2? Let us first address the simplicity issue. As
we mentioned in the previous section, all AA Bitmaps have exactly 4 distinct rows and 4 distinct columns.
This makes them about the simplest weavable patterns, save a few common patterns like the ones illustrated
in Figure 1. Even better, a specialized loom can be designed to take advantage of the fact that the 4 rows are
interrelated, and so are the 4 columns. Such a loom should be easier to setup and to operate; for example,
for each row or column the loom or the labor has to choose between only 2 alternatives instead of four, since
the even/odd alternation can be preset or automated.

Next we consider the long floats issue, which might appear with some input sequences. the key for
solving this problem in AA weaving is to take advantage of the fractal (nested) nature of the underlying
AA Outlines, which allows adding more details to the pattern while still maintaining its existing details, as
shown in Figure 6. Evidently adding details means changing the size of the pattern and/or the density of
threads, but the point is that it makes it possible to weave any arbitrary binary sequence. The details need

AA Weaving

267

Algorithm 3 Generating an AA Bitmap M from vectors {X,Y} used to label columns and rows in the
underlying AA Outline (see Algorithm 1). Indexes start at 1, and all additions are modulo 2.

1 . Use X t o p o p u l a t e t h e f i r s t row of b i tmap M:
A r b i t r a r i l y S e t M[1] [1] t o 0 o r 1
For j = 2 t o wid th o f M

S e t M[1] [j] = M[1] [j −1] + X[j] + 1
2 . Use Y t o p o p u l a t e c o n s e c u t i v e rows of M:

For i = 2 t o h e i g h t o f M
For j = 1 t o wid th o f M

S e t M[i] [j] = M[i −1][j] + Y[i] + j

(a) (b)

Figure 6 : An example of adding finer details to solve the long floats issue: (a) a pattern containing
9 threads floats, and (b) A substitute pattern which maintains all existing details, but limit the
maximum float to 3 threads. Note that the substitute pattern has to be denser and/or larger.

better understanding of AA Fractals [7], which is still a work in progress at the time of this writing.
Moving to the visual appeal issue, it is a fact that any binary sequence can generate an AA bitmap, but

as you can expect, not all such bitmaps are visually appealing. The internal structure of the binary sequence
is reflected in the generated bitmap, so a random sequence is expected to generate an equally random bitmap.

It would therefore be a good idea to have a way to obtain binary sequences that generate the desirable
features in the bitmap. The original AA Patterns now come in handy: Algorithm 4 describes a way to generate
binary sequences for AA Bitmaps using 2 parameters {q, r}. Sequences generated by Algorithm 4, which
we will call AA Sequences, are closely related to AA Patterns, and they generate outlines of the original
AA Patterns [6] when fed as {X,Y} into Algorithm 1. Consequently, using AA Sequences as inputs to
Algorithm 3 produces AA Bitmaps which closely resemble AA Patterns, and enjoy many of their properties.
Specifically, entries of the continued fraction expansion of (q − r)/r directly control levels of details in the
generated bitmap in a similar manner to that described in [5] for AA Patterns. Figure 7 shows example
AA Bitmaps generated from AA Sequences.

Algorithm 4 Generating an AA Sequence A from two co-prime integer parameters {q, r}. Parameters and
variables in this algorithm are related to parameters and variables with similar names in [6]. Note that the
sequence will be periodic, and its period is 2q.

For x = 1 t o r e q u i r e d l e n g t h
S e t dX = ((2 q − r) ∗ x) modulo 2q
i f (dX < q) S e t A[x] = 0
e l s e S e t A[x] = 1

Ahmed

268

(a) {209, 56, 209, 56} (b) {13, 5, 13, 5} (c) {56, 29, 9, 5}

(d) {5, 2, 5, 2} (e) {13, 5, 13, 5} (f) {3, 1, 25, 7} (g) {13, 3, 18, 5} (h) {4, 3, 74, 29}

Figure 7 : Example AA Bitmaps from AA Sequences, with horizontal and vertical parameters
{qh, rh, qv, rv} written beneath each sample. Note the nested structure in (a), the diagonal twill
style in (e), the slow slope in (f), the herringbone style in (g), the illusion of bent lines in (c), and
the illusion of curved lines in (h).

5 Conclusion

In this paper we introduced AA Weaving, a new algorithmic method for weaving design, capable of generating
a weaving pattern (AA Bitmap) from any binary sequence or pair of sequences! We have also supplemented
the technique with an algorithm for generating input binary sequences (AA Sequences) from any pair of
co-prime integer parameters. We consider the findings of this paper a great breakthrough in weaving design,
because AA Bitmaps from AA Sequences are easy to generate, easy to tune, easy to weave, and yet they
are visually rich and appealing thanks to their fractal (nested) structure. Typical visually rich weaving
patterns used to have complex bitmaps, as can be seen, for example, in the thousands of patterns available
at http://www.handweaving.net (as of Apr. 21, 2013). When it comes to AA Bitmaps, however, we do
not ask about complexity at all, as it is always 4 distinct rows by 4 distinct columns, no matter how rich the
pattern is. To summarize, AA Bitmaps represent a fractal form dedicated to weaving.

For future work we recommend (1) studying the properties of AA Patterns and AA Fractals to build

AA Weaving

269

a guide for selecting the appropriate parameters to work with, (2) searching for other families of binary
sequences to be used in AA Weaving, (3) developing a weaving design software tool based on the methods
described in this paper, or integrating these methods into existing tools, and (4) designing specialized looms
which can implement these methods mechanically. The author has already moved a step into (3) and built a
small Java application, supplied with the electronic version of this paper, to demonstrate AA Bitmaps from
AA Sequences.

Acknowledgments. The author thanks Mr Awad Fathelrahman, Mr El Na’eem Yousif, and Mr Ibrahim
El Baloula for their cooperation in producing woven samples of some of the patterns in this paper.

References

[1] Atlas de 4000 Armures, Louis Serrure, France (Arahne) Draft #35168. Available online at http:
//www.handweaving.net/PatternDisplay.aspx?PATTERNID=35168, as of Apr. 3, 2013.

[2] Baldwin’s Textile Designer Vol. 1 No. 7, Brasher Falls, New York, U.S.A. Draft #53946, July 1888.
Available online at http://www.handweaving.net/PatternDisplay.aspx?PATTERNID=53946, as
of Apr. 3, 2013.

[3] The On-Line Encyclopedia of Integer Sequences, 2010. published electronically at http://oeis.org,
as of Apr. 3, 2013.

[4] CORPORATE Adobe Systems Inc. PostScript language reference (3rd ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[5] Abdalla G. M. Ahmed. Mathematical Hints for Parameter Selection for AA Patterns. In Bridges
Coimbra, pages 271–278, Coimbra, Portugal, July 2011. The Bridges Organization.

[6] Abdalla G. M. Ahmed. Pixel Patterns from Quantization Artifacts of Forward Affine Mapping. Journal
of Graphics, GPU, and Game Tools, 15(2):73–94, 2011.

[7] Abdalla G. M. Ahmed. On the Fractal Behaviour of AA Patterns. In Hamish Carr and Silvester Czanner,
editor, Theory and Practice of Computer Graphics, pages 93–97, Rutherford, United Kingdom,
September 2012. Eurographics Association.

[8] Ada K. Dietz. Algebraic Expressions in Handwoven Textiles. Little Loomhouse, 1949.

[9] A.S. Glassner. Morphs, mallards & montages: computer-aided imagination. Ak Peters Series. A K
Peters, 2004.

[10] Ralph E. Griswold. Mathematical and Computational Topics in Weaving. Available online at: http:
//www.cs.arizona.edu/patterns/weaving/webdocs/mo.pdf, as of Apr. 3, 2013.

[11] Ralph E. Griswold. On-Line Digital Archive of Documents on Weaving and Related Topics. http:

//www.cs.arizona.edu/patterns/weaving/webdocs.html, as of Apr. 3, 2013.

[12] Ralph E. Griswold. Designing with Fractal Sequences. 2004. Available online at: http://www.cs.
arizona.edu/patterns/weaving/webdocs/gre_fctl.pdf, as of Apr. 3, 2013.

[13] Kenneth Falconer. Fractal Geometry - Mathematical Foundations and Applications. Wiley, 2 edition,
2003.

Ahmed

270

