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Abstract
M.C.Escher’s hyperbolic tessellations “Circle Limit I-IV” are based on a tiling of hyperbolic plane by identical
triangles. These tilings are rigid because hyperbolic triangles are unambiguously defined by their vertex angles.
However, if one reduce the symmetry of the tiling by joining several triangles into a single polygonal tile, such tiling
can be deformed. Hyperbolic tilings allow a deformation which is called bending. One can extend tiling of the
hyperbolic plane by identical polygons into tiling of the hyperbolic space by identical infinite prisms (chimneys).
The original polygon being the chimney’s cross section. The shape of these 3D prisms can be carefully changed by
rotating some of its sides in space and preserving all dihedral angles.

The resulting tiling of 3D hyperbolic space creates 2D tiling at the infinity of hyperbolic space, which can be thought
of as the sphere at infinity. This sphere can be projected back into the plane using stereographic projection. After
small bending the original circle at infinity of the 2D tiling becomes fractal curve. Further bending results in thinning
the fractal features which eventually form a fractal set of circular holes which in the end disappear.

1 Building the three dimensional chimney

Widely know tessellations of hyperbolic plane are generated by reflections in the sides of triangles with
kaleidoscopic angles (in order to form kaleidoscope triangle’s angles have to be π/n). In particular all four
of M.C. Escher “Circle Limit I-IV” woodcuts are based on rotational subgroup of kaleidoscopic triangle
groups.

Less known are tessellations by polygons with more then 3 sides. Such n-gonal tessellations are es-
pecially interesting because they can be continuously deformed in different ways, which we will illustrate
and use here. Let us consider a 2223 kaleidoscopic quadrilateral in the xy plane of hyperbolic space. The
quadrilateral has angles (π/2,π/2,π/2,π/3) . An example of such quadrilateral is shown in Figure 1 in the
Klein-Beltrami model of hyperbolic space. In that model the whole hyperbolic space is represented as the
interior of the unit ball. Planes are intersections of euclidean planes with the ball. Lines are intersections of
Euclidean lines with the ball. The surface of the ball located at infinity of hyperbolic space. This model is
not conformal (does not preserve the visual angles), but it is more suitable for drawing. Reflections in the
sides of this 2223 quadrilateral generate a tiling in the xy plane.

Now we will extend the quadrilateral into infinite chimney as shown in Figure 2. The edges of the
chimney are 4 infinite lines perpendicular to xy plane incident to the quadrilateral’s vertices. The sides of
the chimney are infinite bands which span pairs of sequential edges. If instead of reflections in the sides
of the quadrilaters we use reflections in the sides of chimney, the tiling of plane by the 2223 quadrilateral
will naturally extended to a tiling of the whole hyperbolic space by these infinite chimneys. Open ends of
chimneys form tiling of the surface of the ball by curved quadrilaterals. In Figure 3 we only show tiling of
the surface of the ball (sphere at infinity) by the lower opening of the chimney. The tiling fills exactly half
of the sphere. The tiling of the sphere can be transformed into tiling of the plane via usual stereographic
projection as shown in Figure 3.

It is remarkable that the stereographic projection of this sphere tiling is identical to the image of the two
dimensional 2223 tiling of a hyperbolic plane realized in the conformal Poincare model.
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Figure 1 : 2223 quadrilateral
in the XY-plane

Figure 2 : Quadrilateral ex-
truded into infinite vertical
chimney

Figure 3 : Tiling of sphere and
plane

2 Bending the quadrilateral chimney

After we extended 2D tiling of the plane into 3D tiling of the space we have extra flexibility to explore how
we can deform that 3D tiling. One of 3D deformations of the chimney is rotation of one side of the chimney
around common perpendicular to its adjacent sides as shown in Figure 4. The side which is being rotated is
highlighted. The axis of rotation in this case is x-axis. The top opening of the chimney becomes narrower
and bottom becomes wider. We call such deformation bending.

It is important to note, that such bending is not possible in the euclidean space. We can form infinite
euclidean tiling by infinite chimneys (parallelepipeds of infinite height), however the arbitrary small rotation
of one side of the chimney will cause intersection of that side with the opposite side which in general breakes
the tiling.

The tiling by slightly bent chimney from Fig. 4 is shown in Fig. 7. We show only the tiling formed by
lower opening of the chimney. The tiles in the plane become slightly deformed. They are not anymore 2D
hyperbolic polyhedron rendered in the Poincare model. Instead they are generic quadrilaterals whose edges
are arcs of the circles. The circular boundary of the tiling from Fig. 7 (the limit set) has changed dramatically.
It became fractal curve.

Figure 4 : Small bend Figure 5 : Bend with cusp Figure 6 : Larger bend

We can bend the chimney further to make rotated side of the chimney touch the opposite side in a point
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Figure 7 : Tiling for Fig 4 Figure 8 : Tiling for Fig 5 Figure 9 : Tiling for Fig 6

on the surface of the sphere (see Fig. 5). Hyperbolic planes touching at infinity are asymptotically parallel.
The corresponding tiling on the surface of the sphere forms set of infinitely thin tentacles or cusps which
appoach to that point of touch (see Fig. 8 and also Fig. 24 for a better view of the similar situation ).

Further bend creates intersection of the opposite sides of the chimney (Fig. 6). The shape is not a
chimney anymore. The bottom opening is still 2223 quadrilateral, but the upper opening becomes triangle
and a new edge inside of hyperbolic space is created. The shape, which induces the tiling of the space via
reflections has to have all dihedral angles to be kaleidoscopic (π/n). Therefore the dihedral angle at that
new edge has to be kaleidoscopic as well. This condition limits the possible bend angles to a set of discrete
points. In Fig. 6 that angle is π/10. The tiling of the plane corresponding to such tile is shown in Fig. 9.
We still show only tiling by lower opening of the shape. The triangle at the upper opening of the shape has
angles π/2,π/3,π/10 That triangle forms an infinite set of hyperbolic triangle tilings of different hyperbolic
planes which plugs the circular holes of the tiling in Fig. 9. Fig. 15 and Fig. 16 show M.C. Escher tilings
bent in the similar way.

We show only few examples of wide variety of possible deformations of the 3D hyperbolic tiling. Other
way to look at the tiling generated by 4 reflections is to use 4 arbitrary planes in 3D hyperbolic space. These
planes may intersect or be disjoint. The reflections in the planes form a tiling of the space, if each pair of
planes has intersection angle π/n or is disjoint. The dimension of parameter space formed by such tiling can
be calculated as follows. Each plane position has 3 degree of freedom, which gives 4×3 degree of freedom
for non intersection planes. Motion of the plane set as a whole has 6 degrees of freedom. Therefore, we have
left 6 degree of freedom for a set of non intersecting planes. Each intersection of planes subtracts one degree
of freedom. There can be from 0 to 6 such intersections which we denote as Ni. Therefore the dimension of
parameter space of tiling formed by reflections in 4 planes has dimension 6−Ni, which varies between 0 for
complete tetrahedron and 6 for a set of disjoin planes.

3 Making M.C. Escher patterns bendable

All four M.C. Escher “Circle Limit...” [1] woodcuts are based on subgroups of various hyperbolic triangle
tilings. Triangles in the hyperbolic geometry can not be deformed without changing the angles. Therefore
we need to reduce the symmetry of the tiling by joining few tiles together to obtain bendable tile.

Let’s consider “Circle Limit I” pattern. The original pattern can be built from hyperbolic triangles with
dihedral angles π/3,π/4,π/4 by reflections in sides a and b and half turn about center C of the third side
(see Fig. 10). The triangle is rigid and can not be deformed. However we can join two such triangles together
along side c and form quadrilateral abde with dihedral angles π/3,π/2,π/3,π/2 (see Fig. 11). The complete
tiling of the the hyperbolic plane is generated by 4 reflections in the sides a, b, d, e.
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Figure 10 : Original fundamental domain of the
“Circle Limit I”

Figure 11 : Bendable fundamental domain of
the “Circle Limit I”

We need to solve one more problem: how to transform pattern in the original fundamental domain into
pattern in the deformed fundamental domain (see Fig. 12). The areas which we want to morph are bounded
by segments of circle or straight lines. In principle it is possible to use brute force approach by covering the
original domain with fine triangle mesh, stretching somehow the mesh onto deformed fundamental domain
and interpolate images between small triangles of the meshes. This approach works in general situation,
however it is computationally expensive and suffers from approximation of curved region with straight trian-
gles. Instead we use the fact that our regions are formed by two pairs of hyperbolic planes forming opposite
sides of the quadrilateral.

Figure 12 : Pattern inside of the original funda-
mental domain has to be morphed into pattern
in the deformed fundamental domain

Figure 13 : Morphing. Point P from the origi-
nal quadrilatera is mapped onto point U in the
unit square. Point U from the unit square is
mapped into P′ in the destination quadrilateral.

We can create family of planes p(u) which interpolate between two opposite sides of quarilateral rep-
resented via 4D vectors a and d via following linear combination

p(u) = (1−u)a+ud,u ∈ [0,1]
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The combination is selected in such a way that p(0) = a and p(1) = d. We have similar expression for family
of planes q(v) which interpolates between another pair of opposite sides b and e

q(v) = (1− v)b+ ve,v ∈ [0,1]

Each point P in the original quadrilateral abcd belongs to one plane from family p(u) and one plane form
family q(v) and is mapped to a unique point in the unit square via transformation which we denote T1.
Similar transformation T2 maps each point P′ in the deformed quadrilateral a′b′d′e′ into a point in the unit
square. The concatenated transfromation T1T2

−1 does the mapping form the original quadrilateral abde into
deformed quadrilateral a′b′d′e′. See Fig. 13 for illustration. Transfromation T2T1

−1 does the reverse mapping
of a′b′d′e′ into abde which is needed for reverse pixel lookup described in the next section.

4 Rendering the tiling

There are two common approaches for rendering the tilings in the hyperbolic geometry. One that is used more
often is to calculate some big the set of transformations of the tilings, transform fundamental domain using
these transformations and render transformed tiles. The size of the image of the transformed fundamental
domain may become very small and this can be used to truncate the invinitely large set of all transformations
to some finite and manageable size. This approach works reasonable well in case of tiling of hyperbolic
plane, where the tiles becomes smaller when tiles approach the circle at infinity.

In our case there is not circle at infinity and the boundary of the tiling can not be calculated explicitly.
Moreover the size of transformed tiles can significantly increase. We use different approach by working in
the image space and tracing each pixel back to it’s pre-image in the fundamental domain. This approach
called reverse pixel lookup was introduced in [2] for rendering two dimensional hyperbolic tilings. The
reverse pixel lookup is directly generalizable to any number of dimensions of hypebolic space. We use such
generalization to render images of tilings at the boundary of three dimensional hyperbolic space.

The idea of reverse pixel lookup is to apply a sequence of the generating transformations to each point
in the image until the point is mapped into fundamental domain. The color of the mapped point in the
fundamental domain is used to color the point in the rendered image. The transformation is added to the
sequence if the current point and body of fundamental domain are on opposite sides of the corresponding
face of the fundamental domain.

The usual computer graphics techniques such as antialiasing and mip mapping are used to increase
the image quality and the rendering speed. The algorithm runs independently for each pixel and is also
implemented to run on modern GPU. This allows real time rendering of the bent tilings.

5 Examples

Several examples are shown in Fig. 14–25 with explanations.
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Figure 14 : Small bend of “Circle Limit I”
pattern. The original circular boundary be-
comes fractal curve. The dihedral symmetry
*3 of the whole figure is preserved.

Figure 15 : Larger bend of “Circle Limit I”
pattern. The angle of intersection of oppo-
site sides is π/16. The dihedral symmetry
*3 is preserved.

Figure 16 : Larger bend of “Circle Limit I”
pattern. The angle of intersection of oppo-
site sides is π/8. The *2 kaleidoscope is
moved to the center.

Figure 17 : Critical bend of “Cir-
cle Limit I” pattern. Three sides of the
chimney intersect in one point (cusp) at in-
finity and form *236 kaleidoscope. Com-
pare with Fig. 16 to see the formation of the
cusp.
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Figure 18 : Bent “Circle Limit II” pattern.
The center of the tiling is in the center of
orignal pattern. The deformation reduces
the symmetry in the center of the original
tiling from ∗4 to ∗2.

Figure 19 : A variation of Fig. 18 with sym-
metry point ∗4 moved to the center.

Figure 20 : “Circle Limit II” pattern with
cusp at the infinity of hyperbolic space. The
symmetry of the tiling has subgroup with
symmetry of eucludean plane kaleidoscope
∗442.

Figure 21 : Larger bend of “Cir-
cle Limit II” pattern. The upper opening of
the chimney is completely closed. The fun-
damental domain has only one component
on infinity - the bottom opening.
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Figure 22 : “Circle Limit III” bend with
fractal boundary with symmetry ∗3 moved
to the center.

Figure 23 : The same bend as in Fig. 22
with symmetry ∗2 moved to the center. The
exterior shape looks quide different, but is
is the same same as in Fig. 22 only trans-
formed by a motion of hyperbolic space.

Figure 24 : “Circle Limit IV” bend with
thin tentacles surrounding the cusp points.

Figure 25 : “Circle Limit IV” bend with
point of intersection of 3 sides located at the
infinity of hyperbolic space. The symmetry
of pattern has subgroup with euclidean sym-
metry ∗333
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