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Abstract 
 

Schwarz’s P and D and Schoen’s Gyroid surfaces are canonical, triply periodic, minimal surfaces widely 

recognized in nature and in the scientific community. Here we present theoretical chemical analogies of these three 

surfaces in the context of nano-carbon structures. Based on the traditional beading techniques that we have 

previously shown to be suited for creating various chemical structures, we constructed the beaded models of these 

chemical structures and thus the underlying mathematical surfaces. Moreover, due to the intricacies of the 

surfaces’s geometries and topologies, especially for the G surface, we developed a useful technique of dividing 

these surfaces into one dimensional strips, whose beading procedures are much easier to follow and can be 

parallelized.  

 

 

Introduction 

 
Material and biological sciences we often encounter situations where we wish to find the morphologies of 

the system that maximize the surface area between two mutually excluding solid regions in a given 

volume. In photovoltaic cells the contact surface of the hole- and the electron-conducting material, or the 

membrane system separating the interior of the endoplasmic reticulum and cytoplasm in a living cell, are 

such instances. Besides the condition of maximizing the surface area, which in turn optimizes the rate of 

chemical process in question, the free energy of the surface must be at a minimum to stay stable within 

the dynamical environment. The second condition is satisfied if the surface is locally area-minimized. 

This leads us to consider the family of triply periodic minimal surfaces (TPMS) with nontrivial topologies, 

whose studies were started in the 19
th
 century by Schwarz, Neovious et al. and followed more recently by 

Schoen in the seventies [1,2]. Among the numerous TPMSs known already, Schwarz’s P and D and 

Schoen’s Gyroid surfaces are the most classic examples (see Figure 1). In particular, they are related by 

the Bonnet transformation which alternates the phase term in the Weierstrass construction, commonly 

used for describing minimal surfaces, with exactly the same Weierstrass function [1].  

 

As demonstrated previously by our group [3,4], fullerene molecules are particularly suited to being 

models for creating craft beads. And the resulting beaded molecular models are both faithful 

representations of the molecules themselves and artistically appealing. Fullerenes are cage-like molecules 

composed of exclusively trivalent carbon atoms, while an iconic symbol for them is the C60 molecule, 

discovered by Curl, Kroto, and Smalley, who were jointly awarded the Nobel Prize in chemistry in 1996.  

 

Here we present three beaded molecules that correspond to the three classic TPMSs. Our first step is to 

discretize the continuous surfaces in an appropriate way such that they are represented by trivalent 

networks similar to representing a sphere by a truncated icosahedron, or a C60 molecule as mentioned 

previously. The detailed prescription of doing so has been thoroughly discussed in the literature [5]. The 

results are plotted in Figure 1. Note that although all three TPMSs have well-defined simple cubic unit 

Bridges 2012: Mathematics, Music, Art, Architecture, Culture

503



cells, for clarity we removed some of the disconnected parts of the D surface in the unit cell and rotated it 

for a sharper analogy with respect to the diamond lattice, which it was named after. In the second row, the 

fullerene counterparts of the surfaces are drawn. While the majority of the polygons are hexagonal and 

painted in white, the loci where the negative Gaussian curvature resides correspond to the location of 

eight-membered rings and are shaded.  

 

 
Figure 1: The three canonical TPMSs and their graphitic counterparts. 

(a) Schwarz’s P surface. (b) Schwarz’s D surface. (c) Schoen’s G surface. 

 

The next and the last step is to simply work out the actual beading procedure. For extended structures like 

the TPMSs, the number of beads needed is usually around two or three thousand. And it typically takes a 

skillful beader up to several weeks to complete the sculpture. Thus to make these models the best way is 

to divide and conquer: individual beaders first work out each of the unit cells comprising the whole model, 

then the model is completed by stitching the unit cells up. We found that while it is relatively easy to find 

our way dividing the P and D TPMSs into beadable unit cells, the exotic geometry and topology of the G 

TPMS makes it extremely difficult to keep track of where we are during the beading process. We have 

been attempting the beaded model of the G surface since long ago when we learned about this surface. 

But it was not until last year when we finally came up with a nice way of dividing it into clean pieces and 

we were able to finish the beading.  

 

Square Planar Lattice Decomposition of TPMSs 

 
So here we briefly describe how this magical division of the G TPMS is done. Before taking a close look 

at the structure of G TPMS, it is instructive to first examine its close relatives Schwarz’s P and D surfaces. 

If we cut the cubic unit cells through the axes of twofold rotational symmetries, we find that they are 

composed of subunits of the shapes resembling catenoids and helicoids, which are themselves (one-

dimensional) periodic minimal surfaces. See part (a) and (b) of Figure 2. It is well known that a catenoid 

can be isometrically and continuously deformed into a helicoid. During the deformation it still possesses 

the property of being minimal, that is, having zero mean curvature. (The reverse is not always true.) It is 

this curious observation that led us to suspect that the G surface might also be decomposed into one 

dimensional subunits related to a surface that can be classified as a certain middle point along that 

continuous transformation. This turns out to be true, though we are not claiming any mathematical rigor. 

However one of the purposes of this paper is to arouse the interest of mathematicians to rationalize this 

observation. As shown in the second row of Figure 2, if one follows the chains of shaded octagons for the 
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P surface one would trace out a circle; for the D surface a twisted straight line; and for the G surface a 

helical curve with its pitch being eight times the radius. 

 

 
Figure 2: Square planar lattice decomposition of the three surfaces. 

(a) Schwarz’s P surface. (b) Schwarz’s D surface. (c) Schoen’s G surface. 

 

So now the route has been set up. First one can work out these cylindrical, twisted, or helical strips to 

some prescribed length. Then by identifying the common polygonal faces that adjacent strips share, one 

can sew the strips together to complete the entire beaded model.  

 

Beaded TPMSs 

 
Here we present the pictures of the finished beaded TPMS in Figure 3 and 4. In all three beadworks, 

eight-membered rings are represented by colored beads while hexagons are white. In particular, despite 

the help from the decomposition schemes mentioned above, it is still quite difficult to deal with the final 

sewing procedure for the G TPMS. Thus we deliberately differentiate octagons with different face normal 

directions by different colors of beads. In the right-handed Cartesian coordinates, eight-membered rings 

with face-normal to the x-axis are represented by purple beads, whereas ones along y-axis and z-axis are 

blue and green, respectively. 

 

 
Figure 3: Beaded Triply Periodic Minimal Surfaces. 

(a) Schwarz’s P surface. (b) Schwarz’s D surface. 
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Figure 4: Beaded Gyroid Surface. 

 

We refer interested readers to our blog where some hundreds of other beaded molecular structures are 

listed and categorized [6].  

 

Acknowledgements. We wish to thank the National Science Council, Taiwan, R.O.C. for its financial 

support of this project. 

 

References 
 

[1] D. A. Hoffman, Some Basic Facts, Old and New, about Triply Periodic Embedded Minimal Surfaces, 

J. Phys. Colloques Vol. 51, C7-197-208, 1990. 

[2] A. H. Schoen, Infinite Periodic Minimal Surfaces without Self-Intersection, NASA Technical Note, 

TN D-5541, 1970. 

[3] B.-Y. Jin, C. Chuang, C.-C. Tsoo, Constructing Molecules with Beads:  The Geometry of 

Topologically Nontrivial Fullerenes, Proceedings of Bridges: Mathematics, Music, Art, Architecture, 

Culture  pp. 391-394, 2010. 

[4] B.-Y. Jin, C. Chuang, C.-C. Tsoo, Desiging Sculptures Inspired by Symmetric High-Genus Fullerenes 

with Mathematical Beading, Proceedings of Bridges: Mathematics, Music, Art, Architecture, 

Culture  pp. 523-526, 2011. 

[5] H. Terrones, Curved Graphite and its Mathematical Transformation, J. Math. Chem. Vol. 15, pp. 143-

156, 1994. 

[6] http://thebeadedmolecules.blogspot.com. 

 

Chuang et al.

506

http://thebeadedmolecules.blogspot.com/

