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Abstract
The integration of evocative images with analytic perspectives can facilitate scientific discovery. The images can
prompt scientists to become more deeply engaged in the interpretive process as a stimulus to further creative insight.

1 Artistic Stimulus of Chemical Discovery

Figure 1 : Ball & stick

Molecular topology and function are closely related in ways that
are not yet fully understood. Humans often infer these topolog-
ical characteristics and relationships from images. Aesthetically
pleasing graphics can facilitate that understanding. The stick
model of CO2 is shown as Figure 1. However, when special
lighting effects and crystals were added in Figure 2 to distin-
guish between the energetic and frozen states, scientists gained
significantly more understanding of carbon freezing by an inter-
polative animation paired with interpretive algorithms. Creative stimulus came from a chemist observing the
crystal changes of snow falling into a river.

(a) (b)

Figure 2 : Energetic and Frozen States

T. Hunter pioneered the depicted high-resolution 3D digital animation techniques, inclusive of scaling
to 9600 x 1080 – a resolution previously unattained in an HD format. The animation has been effective at
generating scientific hypotheses and stimulating popular curiosity into complex petro-chemistry1.

Figure 2(a) was the first frame in an animation ending with Figure 2(b), for a process known as carbon
freezing. Scientific insight into carbon freezing was greatly enhanced by an interpolative animation between
these frames, with story board elements shown in Figure 3. The visual observation, captured in Figure 3(a),
was that as the snow crystals fell and landed in a river, they did not melt but were carried away by the flow.
This triggered the insight that if CO2 molecules were frozen to crystals within a stream of liquid CO2, then
the crystals would emerge from an enriched and purified gaseous environment, as depicted in Figure 3(b).

1This work was conducted under a proprietary agreement between T. Hunter and ExxonMobil Corporation and this is the first
summary approved for public release.
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(a) (b)

Figure 3 : Story Board: Snow Crystals in Flowing River and CO2 Crystals Forming

2 Related Work

The rich history of the role of knots as mathematical models for molecules is nicely summarized and ex-
tended into beautiful contemporary computer graphics and animations [13]. Knot theory is a specialty within
topology and the effectiveness of topology as a powerful abstraction for visualization resonates through the
“Topology in Visualization Workshops” [3, 10]. The preservation of topology in visualization is also ex-
plored under “mathematically precise visualization [4] and “verifiable visualizations” [5]:

that will consider both the errors of the individual visualization component within the scientific
pipeline and the interaction between and interpretation of the accumulated errors generated in the
computational pipeline, including the visualization component.

Topological differences between Bézier curves and their control polygons regarding self-intersections
have been presented [9] with emphasis upon subdivision [11]. Theory for ambient isotopic equivalence
of splines [1] under perturbations has appeared. The value of computational tools in “aesthetic engineer-
ing” [15] has been realized in knot sculptures [14].

3 Topological Theory for Changes in Shape

Section 1 presents the value of aesthetically pleasing images to facilitate understanding of carbon freezing.
Dynamic changes in the form of CO2 molecules were depicted through human creativity. Visualizing dy-
namic changes for other molecules will rely upon developing formal abstractions of those changes in form.
Supportive graphics have prompted discoveries in computational topology for these formalisms.

Figure 4 : Knot Graphics

Relevant topological characteristics are now informally ex-
plained. Splines were used as the geometric data in the animation
frames described in Secion 1 and there are topological subtleties
to consider for spline approximation by the control structure for
graphics display. One topological subtlety [2] is shown in Fig-
ures 4. The spline curve and the PL structure have different em-
beddings, as the PL curve is the trefoil knot2, while the spline
curve is unknotted [7].

Denote by c the closed, composite cubic Bézier curve3 with
control points, P0, P1, . . . P5, P0, respectively listed as: (-6, -6,
12), (4, 1, -1), (-4, 1, 1), (6, -6, -12), (1, 2, 4), (-1, 2, -4), as
shown in Figure 4. Curve c is the unknot but the control poly-

2A trefoil is the knot with three alternating crossings.
3Bézier curves are a class of spline curves.
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gon, denoted as K is a trefoil [2]. The symmetry of K results in two superfluous [7] undercrossings: [P2, P3]
under [P5, P0] and [P2, P3] under [P0, P1]. One co-author had advocated for this symmetry to make for more
aesthetically pleasing images. Another author countered that these extra crossings would complicate the
mathematical analyses needed to ensure a sufficiently fine approximation to produce the correct approxi-
mated shape. However, hat analysis was simplified by the symmetry about the vertical axis, which more
than compensated for the extra crossings. These visual experiments led to a formal theorem that ensures
equivalence of knot type under subdivision for Bézier curves up to degree 3, as a theoretical foundation for
faithful graphics display [8].

4 Topology Visualizing Tool for Mathematical Discovery

Figure 5 : Math Model

The value of these spline visualizations for dis-
covery in computational topology led to the de-
velopment of additional software and further
mathematical discoveries, as now described.
The visually expressive models of CO2 pre-
sented remain too complex for initial mathemat-
ical study for the fundamental topological rela-
tions between a spline and its PL approximation
by subdivision [11]. The software Visualize-
Knots-Curve-Tool was implemented to aid that
mathematical discovery. The Knot Plot site [12]
provides data sets for PL knots with edges all
having the same length, where a representative
example is shown in Figure 5. After viewing
many such examples, it was conjectured that the
associated Bézier curve would always be sim-
ple. As this conjecture was subjected to de-
tailed mathematical analysis, a counterexample
was developed [6]. This visualization tool for the topologist is similar to sketches for a painter.

Figure 6 : Protein Model

To scale our topological analyses, the
authors have created software for building
simplified geometric models of large protein
molecules, with capabilities for graphics display
and animation to study how to preserve desired
topological properties. One of our large pro-
tein images is shown in Figure 6, where many
crossings are readily visible. With knots serv-
ing as molecular abstractions, it is worth not-
ing that the complexity of knot characterization
often increases exponentially in the number of
crossings, arguing for computational tools like
Visualize-Knots-Curve-Tool for as few as 5 or 6
crossings.
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5 Conclusions and Future Directions

Topological methods are emerging as powerful tools in visualization for molecular models. The effectiveness
of topology is further enhanced by additional focus on the aesthetics of the images presented, which not only
produces more artistic images, but also accelerates progress in scientific discovery. It remains crucial to
verify visual experiments with rigorous analysis lest appealing conjectures are erroneously accepted from
extensive data that happens to miss critical pathologies.
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Computer Aided Geometric Design, 28(3):212–214, 2011.

[3] H. Hauser, H. Hagen, and H. Theisel. Topology-based methods in visualization. Mathematics and
visualization. Springer, 2007.

[4] K. E. Jordan, R. M. Kirby, C. Silva, and T. J. Peters. Througy a new looking glass: mathematically
precise visualization. SIAM News, 43(5):1–4, 2010.

[5] R. M. Kirby and C. T. Silva. The need for verifiable visualization. IEEE Computer Graphics and
Applications, September/October:1 – 9, 2008.

[6] J. Li and T. J. Peters. Computational topology counterexamples with 3D visualization of Bézier curves,
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