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Abstract

In this paper I create planar images using lists of pairs of orthogonal ellipses with a common center (POEs) as the single graphic element.
Changing  attributes  of  the  POEs  such  as  size,  color,  position,  rotational  orientation,  and  excentricity  using  linear  and  trigonometric
functions gives rise to a wide spectrum of images.  Some combinations of parameters appear to produce abstractions of three-dimensional
organic creatures and of phantastic assemblages that might have come out of the Burgess Shale in Alberta, Canada.  

Introduction

One half sphere of the moon is illuminated by the sun so that the boundary of the shadow is a great circle of the moon.  We see half of that great
circle move across the face of the moon as the relative positions of sun, earth and moon change during one orbit of the moon around the earth.
When  we  take  a  great  circle  and  project  it  on  the  plane  we  obtain  a  general  ellipse;  there  are  two  extremes:  a  line  segment  representing  the
diameter and a circle representing the equator.  Planetary bodies such as the earth and the moon are shaped like elipsoids with varying degrees of
flattening, e.g., 0.001248 for the moon and 0.003353 for the earth with respect to equatorial and polar radii.  Therefore, drawing a moon sickle
amounts to drawing pieces of two ellipses.  This simple reality of nature is the basis for the images that I want to show you.  I render all graphics
in Mathematica 8 and use only two-dimensional objects: ellipses.  

It all started with two ellipses with semi-axes of 105 and 100 units, respectively; that is ellipses with excentricity  Ε = Ia2
- b2M � a2   of about

0.3049 and a geodesic flattening  f = 
a-b

a
 of about 0.04762.  When I switch the major and minor axes I obtain an orthogonal ellipse, and when I

draw a white ellipse on top of a black ellipse I obtain a pair of symmetrically placed black sickles:  (   ).  Such a figure consisting of a pair of
ellipses with the same center  and with switched semi-axes I  call  a  pair of  orthogonal ellipses  or  a  POE  for  short.   Shifting the center  of  the
white ellipse along the diagonal in the first quadrant produces a single sickle like that of a waning moon.  Abstracting from the stark black and
white image I color the two ellipses, though the graphics in this paper are rendered in gray scale.

Spirals and Shells

One obvious next step is to use layers of POEs in order to create patterns that are mathematically interesting and to render complex images that
are based on this one single visual element.  A common mathematical method to change or move figures is to use linear or affine transformations
and scaling operations.  First, I create lists of POEs from a single POE that I rotate in discrete steps around their common center, synchronously
shrink their size as well as change their color attributes.  All modifications are implemented with linear functions.  The paired sickles rather than
the ellipse shapes dominate the images and form, predictably,  spirals.   When next I  move the common center of the POEs far enough along a
straight line, then the flat, matched sickles of the POEs are moved to a point outside the original POE.  Our eyes frequently see those figures in
three dimensions rather than as planar drawings.  They easily are visually interpreted as top portions of sea or snail shells or of cones or petals.

Worms and Phantastica

The two spiral and shell images above are quite regular and predictable despite the variety that they exhibit.  One reason is that all attributes of
the individual POEs change linearly.  As a next level of complexity I move the center of the POEs along some open or closed curve, for example,

an exponential curve or a Lissajous curve or a cycloid or some parametric curve defined by a polar function such as  r(Φ) = sin3H3 ΦL + cos(4 Φ).
Many of these planar curves exhibit multiple symmetries and the parametric trigonometric curves have self-intersecting patterns that depend on
their periods and can be quite intricate.  However, when they are overlaid in discrete steps with POEs of various sizes, color combinations, and

semi-axes modified by functions such as f(t) = Icos2 t, sin2 tM  the resulting images hide the underlying curves and appear three-dimensional.  In

many cases they form outright fantastic shapes that belie the simplicity of the underlying two-dimensional geometric objects: curves and ellipses.
Here are three representative examples. 
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There do not appear to be any limitations that ellipses and planar curves impose on the imagination.  Depending on the sizes and total number of
the POEs the curve that their center follows may be apparent as in the first image, g(t) = (cos t, sin 2t), or totally obscured by the density of the

POEs as in the third image, h(t) = Isin10H10 tL + cosH10 tL M � (cos t, sin t).

Brief Notes on Implementation

As I mentioned in the beginning, I created all images in Mathematica, but I am not displaying the detailed definition of the function that creates
the images.  However, the function invocation for the second of the three images in the previous section gives the flavor of its design:
Graphics[rotateEllipsePair[butterfly[#,{3,4}]&, f, {2.0,1.0}, {{0,Pi},{-1,1},{-Pi,Pi},90},

colorShift ® {{1,1,-1},{1,-1,1}}, edgeForm ® 0.0005, colorRendering ® False]]
Here argument  butterfly[#,{3,4}]&  is the parametrized version of the function  r(Φ)  and the second argument  f  is the function  f(t),
both  mentioned  in  the  previous  section,  which  control  the  underlying  path  and  the  excentricities  of  the  two  orthogonal  ellipses  in  a  POE,
respectively.  The third argument gives the base values for the two semi-axes.  The three ranges specify the extent of the (parametric) arguments
for the curve, the semi-axes and the rotation of the POEs.  This particular image consists of 90 POEs.  Finally, the three options modify the linear
colorshifts for the pairs of ellipses, the thickness of the boundary outlines of the ellipses, and the type of graphical rendering, respectively.  The
implementation of function  rotateEllipsePair[ ]  uses linear subdivisions for five separate intervals.  All of them are implemented with the single
functions  linear[{e_,f_},{k_,n_},s_:1]:= e + s k (f-e)/n  where  {e, f}  represents the interval, {k, n}  step number  k  in an
n-element subdivision of the interval, and  s  a scaling factor.

Conclusion

One of the large surprises resulting from my investigations into these images has been that they fooled my eye and brain, and hopefully yours
too, into three dimensions.  Why that is must be related to the way that the eye perceives light and shadow expressed through color contrasts and
the  mechanism by  which  the  brain  constructs  an  image  from those  cues.   Even  though  none  of  the  images  are  even  remotely  associated  with
visual experiences in daily life or in nature there is no question in my mind that I see inherently three-dimensional figures and possibly objects
from an alternate reality.  The other huge surprise to me has been that the images are beautiful, full of artistic design elements.  Their mathemati-
cal construction is obvious in many ways, but some of the underlying concepts remain hidden at first sight.  I have used POEs as the single two-
dimensional design element in these images, but I can see three obvious directions in which to prospect for new images: choosing other classes of
curves that form the backbone for placing POEs, relaxing the orthogonality condition to arbitrary and even changing angles between the pairs of
ellipses, and thirdly using closed planar curves other than ellipses as basic visual elements.  I hope to be able to create many more images based
on the principles outlined in this paper.
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