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Abstract

Animations are discussed for a range of geometric dissections. Tretsddra variety of twist-hinged dissections,
some swing-hinged dissections, dissections of squares and cubespomding to a certain integer identities, fold-
ing dissections of multi-level regular polygons, and folding dissectiomaudfi-level polyominoes. Artistic issues
pertaining to these dissections and animations are discussed, suchmastgyrsynchrony, similarity, minimality,
and color patterns. The resulting parade can be found at:  http://wwurdagedu/homes/gnf/parade.htmi

1. Introduction

A geometric dissection is a cutting of a geometric figure into pieces that we amamge to form another
figure. Such visual demonstrations of the equivalence of area gparttiie ancient Greeks through current-
day advances on the world-wide web. During the past century, the esisgigs been on minimizing the
number of pieces for any given dissection, which has catalyzed somekagshabeautiful creations. This
was the subject of my first book [5], in 1997.

As dissection methods have become more sophisticated, attention has atsmfonwspecial properties,
such as all pieces of a dissection being connected by hisg&sg hinges allow the pieces to form one figure
when they are swung one way on the hinges, and to form the other fignee swung the other way on the
hinges. My second book [7], in 2002, focused on swing-hinged digses, along with some “twist-hinged”
dissections. Awist hinge allows one piece to be twisted around relative to the other. My third bookn[8],
2006, exploredolding hinges, which allow pieces to be folded one on top of another.

With talks based on my second book, | found it useful to demonstrate gitysical models. For my
third book, the publisher included a CD with video-tape of me demonstratingugiolding models. That
led me to produce computer-generated animations for talks on material disd@feer my third book. In
the summer of 2011, | packaged those animations into a “parade of algorithrttiemmetical art,” which
became part of a 3-person exhibition, “Art Comes to Lawson.” The éitnibwas installed in our Lawson
Building of Computer Science to commemorate the building’s fifth anniversary.

The intention was to take almost 50 single animations and videos and string thetimeiogto one large
file that would then run continuously on an appropriate display device digpday device would sit inside
a display cabinet that could not be opened by people viewing the shawg thk animations would march
past the viewers one after another, just as in a parade. That motivatdide¢h a paradef algorithmic
mathematical art. Well, Alexander Calder had his circus [18], and | havearadp!

What makes this allgorithmic mathematical art? First, there is the application of elegant dissection
methods to symmetrical figures such as regular polygons and stars.dStwme is the design of decorative
objects such as a table whose top swings from an equilateral triangle t@eesqu garden benches that
reconfigure around a tree or a lamp post. Third, there is the way individogons are smoothly executed
via a sine function. Ideally, these motions reveal symmetry and other mathelnstticture.
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Algorithms are also present in these examples, both in the creation of smootm raotion the use of
dissection methods on certain infinite families of figures. This feature of thk iwgerhaps more hidden,
because of the primary reliance on animation for its display. However, ifpauclose attention to the
animations you will at least get some hint of the underlying algorithms. In segterelax and enjoy the
nifty motion.

Constraints on the display device dictated that the parade, some 20 minutegtin lem partitioned
into five different segments. This article features this same format, with eatibrs focusing on one of the
segments. The conference talk will bracket each segment with discussion

2. Twist-hinged dissections

Figure 1. A twist hinge for pieces A and B

It is surprising that we can use twist hinges (as shown in Figure 1) toftram®ne geometric figure to
another [6, 9, 11]. It is even more surprising that we can take a switged dissection of an equilateral
triangle to a square and convert it into the twist-hinged dissection of Fighye Rust steal isosceles triangles
whose apexes are adjacent to each swing hinge, as shown with the ddgles in Figure 2(a), and glue them

AN <

Figure 2: (a) Isosceles triangles  (b) Resulting twist-hinged disseof an equilateral triangle to a square

We often get the raw material for this operation by forming a strip for onedignd overlaying it with
the strip of another figure. An example is the overlaying of a strip fo{ fl#2} star with a strip of squares,
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as shown in Figure 3(b). To get the strip element for{th2/2} star, we sliced six of the (fat) points off the
star, leaving a regular hexagon, which we sliced in half, as shown ind-&fa)). The resulting eight pieces
can be arranged into the strip element. Special-case tricks are also sometade®une infinite family of
dissections that we identify is of(@k)-sided regular polygon tolesided regular polygon.

Figure 3: (a) Slicing a{12/2} star  (b) Overlaying strips for the dissection of 22/2} star and a square

In the corresponding section we give animations of our twist-hinged disss®f the following figures
to a square: an equilateral triangle,{#13} star, a regular decagon{&/2} star, a regular heptagon, a regular
hexagon, &12/2} star, and a regular octagon. We also give animations of our twist-hingsekctiisns of
the following figures to an equilateral triangle: a regular octagon, a redatagon, a regular pentagon, and
a regular hexagon. Finally we give an animation of our dissection ¢B#3} star to a regular hexagon. In
the parade, you can spot the “synchronized twisting” in the animation dfita&} star to the square.

3. Transfor ming tables and benches

Figure 4. A different hinged dissection of an equilateral triangletequare, with hooks.

In this section we consider geometric dissections that have demandedtieal&aphysical models. A
century ago the renowned puzzlist Henry Dudeney described a hingddl of an equilateral triangle to a
square [3]. Inspired by this construction, the mathematician Howard Bvesp| 37-38] described a set
of four connected tables which he had built that would swing around to &ther a square or a triangular
top. The relative instability of those tables prompted me to design a pedestabitibteuch greater stability
[12]. The dark dots represent the hinges. Piece 2 in Figure 4, whidposted by the pedestal leg, contains
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75% of the area of the table top. The notch on the left in piece 2 allows it tovancdate either piece 5 (as
in the square) or piece 7 (as in the triangle). Note the hooks that hold pegkese in either the triangle or
the square. Also animated is a version in which the notch is placed on theaigat than the left.

If we focus on polygonal rings, we can design twist-hinged dissectibrisgs to polygons and to other
rings. These have a natural application in the design of reconfiguraldembenches [10]. They can result
either by using the geometric structure of various polygons, or by ctingehe trapezoids of one polygonal
ring to trapezoids of a different ring. Each trapezoid gets convertedrapazoid of a different shape, but
of the same height. We can see the conversion to trapezoids of two difér@pes in Figure 5. The five
trapezoids to the left of the dark line segments in the dodecagonal ringrarerted to the five trapezoids in
the pentagonal ring, while the seven trapezoids to the right of the darlelgments in the dodecagonal ring
are converted to the seven trapezoids in the heptagonal ring.

Figure 5: A twist-hinged dissection of a dodecagonal ring to a pentagjand a heptagonal rings

In this section of the talk we animate: a decagonal bench that reconfigoesvo pentagonal antir-
ing benches, a decagonal ring bench to two pentagonal benchede@agonal ring bench to three square
benches, two dodecagonal ring benches to three octagonal ringdsera dodecagonal ring bench to a
“square” ring bench, and a dodecagonal ring bench to a pentagogdiench and a heptagonal ring bench.

4. Squares and cubes

Next we enjoy several infinite families of dissections based on identities imgobums of squares of
integers, and also sums of cubes of integers [13, 15]. The technigigefdifying the identities of squares
was discovered by Georges Dostor [2]. The first family of identities is:

Fi4 = & (k=1)
104112 +12% = 1P 14 (k=2)
212422 423 4282 = 25 426°+27° (k=23)

For eactk = 1,2,..., Michael Boardman [1] identified &bk)-piece symmetrical dissection for theth
identity in the sequence. Boardman’s dissectionkfer 1, in Figure 6(a), illustrates his basic technique:
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cutting the middle square into rectangles that are arranged around the sga#ez(s) to produce the larger
square(s). We have discovergtk)-piece hinged dissections [15]; see Figure 6(b)Ker 1. Among all
dissections whose cuts are parallel to the sides of the squares, otie fseest possible number of pieces.

32 42 52 32 42 52

Figure 6: (a) Boardman'’s dissection fof3-42 =5  (b) My hinged dissection of squares far-84% = 52

Applying Dostor’s technique in a different way, we identified the seqgeaiédentities below and also
found hinged dissections that udepleces, the fewest possible number of pieces [15].

12422422 = 3 (k=1)
41521 62+6° = 7248 (k=2)
P10+ 112 +122+12% = 1P +14 417 (k=3)

We can apply the same sort of approach for cubes, where we havdiatetihe following sequence of
identities. For eack=1,2,..., we have discovered(@k)-piece symmetrical dissection for theth identity
[13]. Itis analogous to Boardman’s technique for squares, in thatstaue cube into rectangular blocks
that we then used to surround the smaller cubes. Robert Reid (in [5])ifan 8-piece dissection for the
first identity, and we have shown how to generalize his approach tq 8kyepiece dissections for all of the
identities [13]. Among all dissections whose cuts are parallel to the sidee ofittes, these dissections use
the fewest possible number of pieces.

B+13453462 = 7B (k=1
Br134+2242241688+17P+18 = 1984+20° (k=2)
P13+22 422433433433 434435+36° = 37°+38°+39° (k=3)

In our parade, animations that emphasize the symmetry and similarity are gintbe first two identities
in each of the above three families. Especially captivating are the animatidrentphasize the symmetry
by “dealing off the bottom of the deck.”

5. Folding multi-level regular polygons

We can use long hinges, such as the hinge that connects the lid to the badyaofd piano, to achieve
a folding motion. Such hinges allow us to fold regular polygons of a certainbeu of levels to regular
polygons of a perhaps different number of levels [14, 16].

In Figure 7 we see how to dissect and fold our 4-level equilateral tridn@e3-level equilateral triangle
[16]. A dotted line denotes a folding hinge between two pieces that areesudjan the same level. When a
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Figure 7: Folding dissection of a 4-level triangle to a 3-level trilmfjop levels on left, bottom levels on right)

piece on one level is hinged to a piece on a level either immediately above @r ibelee denote the hinge
by a row of dots next to the shared edge on each level. In Figure 7 sdieaad G are two levels thick, and
the remaining eight pieces are each one level thick. There is a cyclic hiagioggst pieces D, E, F, and G.
We have discovered several infinite families of folding dissections.kkerl, 2, ..., we know how to
fold a 1-level equilateral triangle tok#-level equilateral triangle, and also a 2-level equilateral triangle to a
(2k? + 2k + 2)-level equilateral triangle [14].
Fork=1,2,..., we can also fold a 2-level(4k+2) /(2k — 1)} star to a 4-leve{(2k+1)/k} star using
6k + 3 pieces [14]. Fok = 2 this gives the 15-piece folding dissection of a 2-leyB0/3} star to a 4-level
{5/2} star in Figure 8. Pieces B, E, H, K, and N are two levels thick, and the restre level thick.

Figure 8: Folding a 2-level10/3} star to a 4-leve{5/2} star (piece A on the top, piece O on the bottom)
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Our dissections and animations include: a 1-level square to an 8-le\ares@ul-level regular hexagon
to a 3-level regular hexagon, a 4-level regular hexagon to a 3-legellar hexagon, a 1-lev§b/2} star
to a 3-level{6/2} star, a 1-level equilateral triangle to a 4-level equilateral triangle, a dl-kyuilateral
triangle to a 9-level equilateral triangle, a 2-level equilateral triangle to-keve!l equilateral triangle, a
4-level equilateral triangle to a 3-level equilateral triangle, and a 2-fgM@13} star to a 4-leve{5/2} star.

6. Folding multi-level polyominoes

A polyomino is a geometric figure consisting of congruent squares that are gludatiéogelge-to-edge.
We have discovered several infinite sets of polyominoes where edtlpsiyomino can fold from two levels
to one level of the samé.€ similar) polyomino [17]. The most fundamental of these sets aretieformed
polyominoes, in which two HV-squares (squares that are adjacent bdiohtally and vertically to other
squares) are never adjacent to each other. See Figure 9 for twolesavhprell-formed polyominoes.

S : : (hole) (hole)

Figure 9: Two examples of well-formed polyominoes, with HV-squaresrked

We are able to fold any 2-level well-formed polyomino to a 1-level polyominoiroflar shape. Our
animations include examples of 1-level to 2-level folding dissections of a Catiss, a Cross of Jerusalem,
a Greek Cross, a Cross of Lorraine, an F-pentomino, and a quasienmid polyomino. We also have an
animation of a 1-level Greek Cross to 9 levels. In the video of our wooderhobthe Cross of Jerusalem,
each level of the 2-level version is a different color, which then folds a1-level version in which the
pieces alternate in colors. Such a property holds for every well-forra@mino.
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