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Abstract
Animations are discussed for a range of geometric dissections. These include a variety of twist-hinged dissections,
some swing-hinged dissections, dissections of squares and cubes corresponding to a certain integer identities, fold-
ing dissections of multi-level regular polygons, and folding dissections ofmulti-level polyominoes. Artistic issues
pertaining to these dissections and animations are discussed, such as symmetry, synchrony, similarity, minimality,
and color patterns. The resulting parade can be found at: http://www.cs.purdue.edu/homes/gnf/parade.html

1. Introduction

A geometric dissection is a cutting of a geometric figure into pieces that we can rearrange to form another
figure. Such visual demonstrations of the equivalence of area span from the ancient Greeks through current-
day advances on the world-wide web. During the past century, the emphasis has been on minimizing the
number of pieces for any given dissection, which has catalyzed some remarkably beautiful creations. This
was the subject of my first book [5], in 1997.

As dissection methods have become more sophisticated, attention has also focused on special properties,
such as all pieces of a dissection being connected by hinges.Swing hinges allow the pieces to form one figure
when they are swung one way on the hinges, and to form the other figure when swung the other way on the
hinges. My second book [7], in 2002, focused on swing-hinged dissections, along with some “twist-hinged”
dissections. Atwist hinge allows one piece to be twisted around relative to the other. My third book [8],in
2006, exploredfolding hinges, which allow pieces to be folded one on top of another.

With talks based on my second book, I found it useful to demonstrate actualphysical models. For my
third book, the publisher included a CD with video-tape of me demonstrating various folding models. That
led me to produce computer-generated animations for talks on material discovered after my third book. In
the summer of 2011, I packaged those animations into a “parade of algorithmic mathematical art,” which
became part of a 3-person exhibition, “Art Comes to Lawson.” The exhibition was installed in our Lawson
Building of Computer Science to commemorate the building’s fifth anniversary.

The intention was to take almost 50 single animations and videos and string them together into one large
file that would then run continuously on an appropriate display device. Thedisplay device would sit inside
a display cabinet that could not be opened by people viewing the show. Thus the animations would march
past the viewers one after another, just as in a parade. That motivated the title: a paradeof algorithmic
mathematical art. Well, Alexander Calder had his circus [18], and I have my parade!

What makes this allalgorithmic mathematical art? First, there is the application of elegant dissection
methods to symmetrical figures such as regular polygons and stars. Second, there is the design of decorative
objects such as a table whose top swings from an equilateral triangle to a square, or garden benches that
reconfigure around a tree or a lamp post. Third, there is the way individual motions are smoothly executed
via a sine function. Ideally, these motions reveal symmetry and other mathematical structure.
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Algorithms are also present in these examples, both in the creation of smooth motion and in the use of
dissection methods on certain infinite families of figures. This feature of the work is perhaps more hidden,
because of the primary reliance on animation for its display. However, if youpay close attention to the
animations you will at least get some hint of the underlying algorithms. In any event, relax and enjoy the
nifty motion.

Constraints on the display device dictated that the parade, some 20 minutes in length, be partitioned
into five different segments. This article features this same format, with each section focusing on one of the
segments. The conference talk will bracket each segment with discussion.

2. Twist-hinged dissections
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Figure 1: A twist hinge for pieces A and B

It is surprising that we can use twist hinges (as shown in Figure 1) to transform one geometric figure to
another [6, 9, 11]. It is even more surprising that we can take a swing-hinged dissection of an equilateral
triangle to a square and convert it into the twist-hinged dissection of Figure 2(b). Just steal isosceles triangles
whose apexes are adjacent to each swing hinge, as shown with the dashed edges in Figure 2(a), and glue them
together!
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Figure 2: (a) Isosceles triangles (b) Resulting twist-hinged dissection of an equilateral triangle to a square

We often get the raw material for this operation by forming a strip for one figure and overlaying it with
the strip of another figure. An example is the overlaying of a strip for the{12/2} star with a strip of squares,
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as shown in Figure 3(b). To get the strip element for the{12/2} star, we sliced six of the (fat) points off the
star, leaving a regular hexagon, which we sliced in half, as shown in Figure 3(a). The resulting eight pieces
can be arranged into the strip element. Special-case tricks are also sometimes used. One infinite family of
dissections that we identify is of a(2k)-sided regular polygon to ak-sided regular polygon.

Figure 3: (a) Slicing a{12/2} star (b) Overlaying strips for the dissection of a{12/2} star and a square

In the corresponding section we give animations of our twist-hinged dissections of the following figures
to a square: an equilateral triangle, an{8/3} star, a regular decagon, a{6/2} star, a regular heptagon, a regular
hexagon, a{12/2} star, and a regular octagon. We also give animations of our twist-hinged dissections of
the following figures to an equilateral triangle: a regular octagon, a regular decagon, a regular pentagon, and
a regular hexagon. Finally we give an animation of our dissection of an{8/3} star to a regular hexagon. In
the parade, you can spot the “synchronized twisting” in the animation of the{12/2} star to the square.

3. Transforming tables and benches
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Figure 4: A different hinged dissection of an equilateral triangle toa square, with hooks.

In this section we consider geometric dissections that have demanded realization as physical models. A
century ago the renowned puzzlist Henry Dudeney described a hingedmodel of an equilateral triangle to a
square [3]. Inspired by this construction, the mathematician Howard Eves [4, pp. 37–38] described a set
of four connected tables which he had built that would swing around to form either a square or a triangular
top. The relative instability of those tables prompted me to design a pedestal tablewith much greater stability
[12]. The dark dots represent the hinges. Piece 2 in Figure 4, which is supported by the pedestal leg, contains
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75% of the area of the table top. The notch on the left in piece 2 allows it to accommodate either piece 5 (as
in the square) or piece 7 (as in the triangle). Note the hooks that hold piecesin place in either the triangle or
the square. Also animated is a version in which the notch is placed on the right rather than the left.

If we focus on polygonal rings, we can design twist-hinged dissections of rings to polygons and to other
rings. These have a natural application in the design of reconfigurable garden benches [10]. They can result
either by using the geometric structure of various polygons, or by converting the trapezoids of one polygonal
ring to trapezoids of a different ring. Each trapezoid gets converted to atrapezoid of a different shape, but
of the same height. We can see the conversion to trapezoids of two different shapes in Figure 5. The five
trapezoids to the left of the dark line segments in the dodecagonal ring are converted to the five trapezoids in
the pentagonal ring, while the seven trapezoids to the right of the dark line segments in the dodecagonal ring
are converted to the seven trapezoids in the heptagonal ring.
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Figure 5: A twist-hinged dissection of a dodecagonal ring to a pentagonal and a heptagonal rings

In this section of the talk we animate: a decagonal bench that reconfiguresinto two pentagonal antir-
ing benches, a decagonal ring bench to two pentagonal benches, a dodecagonal ring bench to three square
benches, two dodecagonal ring benches to three octagonal ring benches, a dodecagonal ring bench to a
“square” ring bench, and a dodecagonal ring bench to a pentagonalring bench and a heptagonal ring bench.

4. Squares and cubes

Next we enjoy several infinite families of dissections based on identities involving sums of squares of
integers, and also sums of cubes of integers [13, 15]. The technique for identifying the identities of squares
was discovered by Georges Dostor [2]. The first family of identities is:

32+42 = 52 (k = 1)

102+112+122 = 132+142 (k = 2)

212+222+232+242 = 252+262+272 (k = 3)
...

For eachk = 1,2, . . ., Michael Boardman [1] identified a(5k)-piece symmetrical dissection for thek-th
identity in the sequence. Boardman’s dissection fork = 1, in Figure 6(a), illustrates his basic technique:
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cutting the middle square into rectangles that are arranged around the smallersquare(s) to produce the larger
square(s). We have discovered(4k)-piece hinged dissections [15]; see Figure 6(b) fork = 1. Among all
dissections whose cuts are parallel to the sides of the squares, ours usethe fewest possible number of pieces.

5232 42 5232 42

Figure 6: (a) Boardman’s dissection for 32+42 = 52 (b) My hinged dissection of squares for 32+42 = 52

Applying Dostor’s technique in a different way, we identified the sequence of identities below and also
found hinged dissections that use 4k pieces, the fewest possible number of pieces [15].

12+22+22 = 32 (k = 1)

42+52+62+62 = 72+82 (k = 2)

92+102+112+122+122 = 132+142+152 (k = 3)
...

We can apply the same sort of approach for cubes, where we have identified the following sequence of
identities. For eachk = 1,2, . . ., we have discovered a(9k)-piece symmetrical dissection for thek-th identity
[13]. It is analogous to Boardman’s technique for squares, in that it cuts one cube into rectangular blocks
that we then used to surround the smaller cubes. Robert Reid (in [5]) found an 8-piece dissection for the
first identity, and we have shown how to generalize his approach to give(8k)-piece dissections for all of the
identities [13]. Among all dissections whose cuts are parallel to the sides of the cubes, these dissections use
the fewest possible number of pieces.

13+13+53+63 = 73 (k = 1)

13+13+23+23+163+173+183 = 193+203 (k = 2)

13+13+23+23+33+33+333+343+353+363 = 373+383+393 (k = 3)
...

In our parade, animations that emphasize the symmetry and similarity are given for the first two identities
in each of the above three families. Especially captivating are the animations that emphasize the symmetry
by “dealing off the bottom of the deck.”

5. Folding multi-level regular polygons

We can use long hinges, such as the hinge that connects the lid to the body ofa grand piano, to achieve
a folding motion. Such hinges allow us to fold regular polygons of a certain number of levels to regular
polygons of a perhaps different number of levels [14, 16].

In Figure 7 we see how to dissect and fold our 4-level equilateral triangleto a 3-level equilateral triangle
[16]. A dotted line denotes a folding hinge between two pieces that are adjacent on the same level. When a
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Figure 7: Folding dissection of a 4-level triangle to a 3-level triangle (top levels on left, bottom levels on right)

piece on one level is hinged to a piece on a level either immediately above or below it, we denote the hinge
by a row of dots next to the shared edge on each level. In Figure 7, pieces D and G are two levels thick, and
the remaining eight pieces are each one level thick. There is a cyclic hingingamongst pieces D, E, F, and G.

We have discovered several infinite families of folding dissections. Fork = 1,2, . . ., we know how to
fold a 1-level equilateral triangle to ak2-level equilateral triangle, and also a 2-level equilateral triangle to a
(2k2+2k+2)-level equilateral triangle [14].

For k = 1,2, . . ., we can also fold a 2-level{(4k+2)/(2k−1)} star to a 4-level{(2k+1)/k} star using
6k+3 pieces [14]. Fork = 2 this gives the 15-piece folding dissection of a 2-level{10/3} star to a 4-level
{5/2} star in Figure 8. Pieces B, E, H, K, and N are two levels thick, and the rest are one level thick.
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Figure 8: Folding a 2-level{10/3} star to a 4-level{5/2} star (piece A on the top, piece O on the bottom)
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Our dissections and animations include: a 1-level square to an 8-level square, a 1-level regular hexagon
to a 3-level regular hexagon, a 4-level regular hexagon to a 3-level regular hexagon, a 1-level{6/2} star
to a 3-level{6/2} star, a 1-level equilateral triangle to a 4-level equilateral triangle, a 1-level equilateral
triangle to a 9-level equilateral triangle, a 2-level equilateral triangle to a 14-level equilateral triangle, a
4-level equilateral triangle to a 3-level equilateral triangle, and a 2-level{10/3} star to a 4-level{5/2} star.

6. Folding multi-level polyominoes

A polyomino is a geometric figure consisting of congruent squares that are glued together edge-to-edge.
We have discovered several infinite sets of polyominoes where each such polyomino can fold from two levels
to one level of the same (i.e. similar) polyomino [17]. The most fundamental of these sets are thewell-formed
polyominoes, in which two HV-squares (squares that are adjacent both horizontally and vertically to other
squares) are never adjacent to each other. See Figure 9 for two examples of well-formed polyominoes.
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HVHV
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Figure 9: Two examples of well-formed polyominoes, with HV-squares marked

We are able to fold any 2-level well-formed polyomino to a 1-level polyomino of similar shape. Our
animations include examples of 1-level to 2-level folding dissections of a LatinCross, a Cross of Jerusalem,
a Greek Cross, a Cross of Lorraine, an F-pentomino, and a quasi-well-formed polyomino. We also have an
animation of a 1-level Greek Cross to 9 levels. In the video of our wooden model of the Cross of Jerusalem,
each level of the 2-level version is a different color, which then folds into a 1-level version in which the
pieces alternate in colors. Such a property holds for every well-formed polyomino.
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