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Abstract
In Bobbin Lace, a pattern is divided into regions by shape, each region filled with a texture. Since Bobbin Lace
is generally made with a single colour of thread (black, white or ecru), the textures take on the role of colour to
provide interest and shading. Using a combinatorial approach, I will look at one aspect of Bobbin Lace and examine
how many unique textures are possible for a specified number of grid points. I will compare the results to textures
currently known and used in Bobbin Lace. In the process, I hope to rediscover some of the more complicated textures
that have been lost over time as well as identify some new textures which may be of use to modern Bobbin Lace
artists. Bobbin Lace provides a very high level of control over the position of threads in a material. It is hoped that
by increasing the palette of possible textures, the results may also prove useful to electronic textile manufacturing or
fabric designed for a specific purpose such as medical prostheses.

1 Introduction

Bobbin Lace has a long history in Europe and England. It is believed to have developed from passementerie,
the art of ornamental braiding, and evolved into its current form during the last half of the 15th and first half
of the 16th centuries. The lace gets its name from small wooden sticks, called bobbins, used to control the
threads during production. Hundreds of bobbins may be required to make a single piece of lace. Throughout
its history, Bobbin Lace has been used to create elaborate and complex designs achieving its height of
diversity in the 18th century when lace was a key element in fashion. In the 19th century, due to competition
from machine made copies, there was an emphasis on simplifying designs to increase the speed and volume
of production. During this period, some of the knowledge and skill associated with earlier designs was lost.
After World War I, Bobbin Lace production as an industry ceased completely and Bobbin Lace was relegated
to the status of hobby craft. Interest in reviving the craft started in the 1970’s. Initially, the focus was on
basic techniques used in the 19th century but towards the end of the 20th century, interest turned to reviving
some of the more advanced techniques employed in 17th and 18th century laces as well as inventing new
ones. This brief summary of lace history is based on the writings of Levey [3].

Despite its interesting topology and logical construction, very little has been written about Bobbin Lace
from an algorithmic or mathematical point of view. The relationship between Bobbin Lace and Braid Theory
receives a brief mention in a discussion of the topology of textiles by Grishanov [6] and a passing reference
by Kauffman [2] in his work on the applications of Knot Theory. In this paper, I shall frame some of the
basic concepts of Bobbin Lace in a mathematical manner in the hope that this will spark others to take a
closer look at the wealth of interesting mathematical properties found here.

The primary objective of this paper is to capture the basic constraints of Bobbin Lace production. For
a subset of these constraints, I will use a combinatorial approach to enumerate and generate all possible
solutions for a specified number of grid points. The result will be compared to the known set of stitches, as
outlined by Cook and Stott [1] in their cornerstone collection of Bobbin Lace stitches. It is also expected
that a wealth of new stitches will be identified. 1

1This research was supported by an NSERC Alexander Graham Bell Scholarship. Many thanks to Melanie Tory, Frank Ruskey,
Sue Whitesides, Wendy Mervold and Elizabeth Blokker for their encouragement and feedback.
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2 Background

The term Bobbin Lace encompasses a diverse family of lace styles that share a common base technique.
I will focus on the subgroup known as Straight Lace which contains well known styles such as Chantilly,
Bucks Point and Torchon. The distinguishing characteristic of Straight Lace is that it is made from start to
finish with the same set of threads - that is, threads are rarely added or removed and a single thread can be
traced from one end of the lace to the other. This is in contrast to Part Lace in which small pieces of lace
are worked as individual units that are later joined together. An interesting challenge of Straight Lace is
determining how to move threads from one design element to the next so that the correct number of threads
are available as required.

Figure 1 : Left: Regions of varying texture in a Bucks Point edging. Right: Various grids.

At first glance, a piece of Bobbin Lace may appear to be an impossibly complicated interweaving of
threads. On closer inspection, however, we see that the lace consists of a number of small regions, each filled
with a single texture. In some laces, the boundary between regions is emphasised by a thicker thread known
as “gimp”. Figure 1 shows an example of Bucks Point lace with a number of distinct regions 2. Notice
the different textures used in each region. Each texture corresponds to what in lace terminology is called a
“stitch”. Stitches range from a very dense texture called “cloth” (named after plain weave cloth which has
the same topology) to very open textures like netting. Some stitches are simple and unobtrusive, like a basic
net which is mainly used as a background, while others, like the Catherine Wheel, are very ornate and draw
attention to an area. Since Bobbin Lace is traditionally made with thread of a single colour (black, white or
ecru), the stitches take on the role of colour to provide contrast, interest and shading. A texture or stitch can
be used to fill a region of any size or shape and must therefore have the property that it can tile the plane.

Bobbin Lace is worked on a grid. The angle of the grid ranges from 45◦ to 60◦ depending on the style of
lace. In some cases polar grids or grids of variable spacing may be used. The grid is oriented on the diagonal
as shown on the right side of Figure 1. In this paper, I am primarily concerned with the topology of the lace
and not the specific geometry. For this reason, I shall use a 45◦ grid in the illustrations.

The procedure for making lace can be broken into three main components: Actions, Pair Traversal and
Pinning. In this paper I will focus on Pair Traversal but I will describe all three components for context.

Actions: Like many other textiles, Bobbin Lace is formed from two basic actions. The actions are
always performed on a set of four threads, which, for reasons that will become clear very soon, are thought
of as two pairs: the left pair and the right pair. The first action, known as the “cross”, is performed by taking
the rightmost thread from the left pair and crossing it over the leftmost thread of the right pair (see Figure 2).
In Braid Theory, this corresponds to the braid word σ2i where i is any positive integer. The second action,
known as the “twist”, is performed by crossing the rightmost thread of the left pair over the leftmost thread
of the left pair and similarly crossing the rightmost thread of the right pair over the leftmost thread of the

2Reproduced with permission from http://www.laceforstudy.org.uk
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right pair. In Braid Theory, this corresponds to the braid word σ
−1
2i−1σ

−1
2i+1. In Braid Theory, when even and

odd generators have opposite signs, the result is an alternating braid - that is, a braid where strand crossings
alternate between over and under as in plain weave cloth [4]. Looking at the braid words for the cross and
twist actions, we see that they possess this property and will therefore always produce alternating braids no
matter how they are combined. Bobbin Lace is generally very open and airy and therefore relies on this
alternating architecture for structural integrity.

Figure 2 : Cross and Twist: the two base actions used in Bobbin Lace.

Pair Traversal: Once a number of actions have been performed with the current set of four threads,
the lacemaker moves on to the next set. This can be done in a number of ways which is the topic I will
explore in Section 3. By way of example, the lacemaker could set aside the left pair of threads from the
current grouping, and start to work with the former right pair and a new pair brought in from above and to
the right. This progression is shown in Figure 3. The way in which the threads travel across the design is a
major contributor to the complexity of a texture.

Figure 3 : Progression of pairs of threads from one set to another.

Pinning: Pins, placed mainly at the grid points, are used to maintain the shape of the lace during
production. The lacemaker performs a series of actions with two pairs of threads then places a pin between
the pairs. She may then perform some more actions before moving on to the next set of pairs (called ‘closing’
the pin because the pin is enclosed by crossed threads) or move directly on to the next set of pairs (resulting in
an ‘open’ pin with crossed threads above the pin but not below it). To create a smooth result, the lacemaker
regularly applies tension to the threads which the pins resist. The presence of pins has no effect on the
topology of the lace but does have a significant effect on the geometry and therefore the final appearance.

3 A Detailed Look at Pair Traversal

The flow of pairs of threads through a texture can be represented as a Directed Graph. In Figure 4, the
image on the left shows a braid diagram of a typical texture in which each strand represents a thread. An
oval is drawn around a sequence of actions performed on a single set of four threads (in this example the
action sequence is cross, twist, cross). In the middle drawing, the distance between the action sequences is
exaggerated to emphasise the movement of pairs of threads from one action sequence to the next. On the
right, each action sequence has been reduced to a dot - a vertex in the Directed Graph. A pair of threads
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moving between two action sequences is represented by a single line with an arrow indicating the direction
of movement - an arc in the Directed Graph.

Figure 4 : Pair traversal in a texture represented as a directed graph.

In Bobbin Lace, physical and practical limitations on the way that pairs traverse the grid can be trans-
lated into constraints on the Directed Graph.

1. Weakly Monotonic: As shown in Figure 6A, Bobbin Lace is produced on a pillow with wooden
bobbins. Straight lace starts at the point on the pillow farthest away from the lacemaker and is worked
toward the lacemaker’s body which in this paper I will represent as top to bottom. Pairs may move
downward or horizontally but never upward. This results in a weakly monotonic directed graph. For
long pieces of lace, the pillow may have a built in roller which is turned as the lace is produced or, on
simple pillows, the lacemaker must pick up the lace once it gets close to the edge of the pillow and
move it to the far end of the pillow in order to continue.

2. Tile the Plane: A texture can be used to fill any shape and must therefore extend in all directions. We
can consider the traversal pattern as a planar directed graph with an infinite number of vertices, a small
representative portion of which is shown on the left side of Figure 5. Within this infinite graph, there is
a rectangular subset of vertices, a prototile, and the traversal pattern of this rectangle is repeated in all
directions using p1 symmetry. Since an infinite number of vertices is difficult to model and the entire
pattern can be represented by a finite subset, it is useful to consider a single prototile in which outgoing
arcs from vertices along one side of the prototile wrap around to become incoming arcs on the opposite
side of the prototile. The resulting directed graph is non-planar as shown on the right side of Figure 5.

Figure 5 : Tiling the plane. Left: a representative subset of an infinite graph. Right: A wrapped prototile.

3. 2 In, 2 Out: At each node, two pairs of threads arrive and two pairs of threads leave. The associated
Directed Graph therefore has in-degree 2 and out-degree 2, also known as a 2-regular digraph [5]. The
only exception to this is an empty node in which no pairs arrive and no pairs leave – in the directed
graph, this corresponds to an isolated vertex.
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4. Conservation of Pairs: In Straight Lace, threads travel the entire length of the lace. Unless the width
of the lace changes significantly, no pairs are added or removed during the working of the pattern. In
order to achieve this, the number of pairs used in a single tile must be conserved. Figure 6C shows
a traversal pattern in which pairs are conserved by weaving back and forth. Figure 6D shows a very
similar pattern but in this case pairs are not conserved: at each row a pair is added on the left and
removed on the right. A balance is required between the number of left and right oriented arcs.

Figure 6 : A) Bobbin Lace being worked on a pillow. B) Close up of pins and threads. C) Threads
conserved, 4 pairs used. D) Threads not conserved, 8 pairs used. E) Pattern not connected.

5. Connected: Like a piece of cloth, lace must hold together on its own; it must not be a collection of
disconnected pieces. Figure 6E shows an invalid, disconnected traversal pattern. A traversal pattern
is connected if a path exists between the top left vertex and every non-isolated vertex in the wrapped,
directed graph of the prototile. In addition, there must be at least one outgoing arc from a vertex along
either the left or right border of the prototile that wraps around to the opposite border.

6. Simple: In the traversal pattern there are no arcs that start and end at the same vertex and no two arcs
share the same endpoints (independent of direction). The related directed graph is therefore described
as simple. Note: Bobbin Lace is commonly decorated with “picots” which are small loops formed by
two threads. As these loops play no role in the traversal pattern, the directed graph is still simple.

3.1 Variations

While there are always exceptions, the constraints described above apply to most Straight Bobbin Lace
stitches. By adding some additional restrictions we can identify common stitch subgroups. I will describe
two main subgroups but there are several others.

Figure 7 : Basic traversal patterns. Each node has a label of the form a1a2a3a4a5a6 where ai = 1
is an incoming arc, ai =−1 is an outgoing arc and no arc is ai = 0. The label 11-1-100 indicates
that the node is connected by incoming arcs to a1 and a2 and by outgoing arcs to a3 and a4.

The first group I will call Basic because it is the most simple. In the Basic group, pairs can move to
nodes immediately left or right and diagonally below as shown in Figure 7. In a 60◦ grid, this corresponds
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to arcs between the six nearest neighbours of the node. Note that in a 45◦ grid the node immediately below
is not included even though it is at the same distance as the nodes immediately left and right.

The second subgroup I will call Interleaved because it uses two interleaved grids as shown on the left
side of Figure 8. Pairs can travel to nodes immediately left or right, immediately below and diagonally below
resulting in arcs between eight adjacent nodes. In this configuration, we also add the constraint that pairs
must only cross at nodes. As a result, two horizontally adjacent nodes may not have incoming diagonal arcs
that cross.

Figure 8 : Two interleaved diagonal grids and allowed traversals.

4 Algorithm for Generation and Enumeration

Like the enumeration of 2-regular directed graphs conducted by Ramanath and Walsh [5], I will use a back-
tracking approach to enumerate and generate the pair traversals for Basic and Interleaved stitches. My
algorithm identifies isomorphically unique traversal patterns by iterating over outgoing arc configurations
for each vertex. Incoming arc configurations automatically follow from the assignment of outgoing arcs.
There are 7 possible outgoing choices at each vertex for Basic stitches and 11 for Interleaved stitches.

Several early termination conditions are used to reduce the overall order of the algorithm:

• As each arc is added, test the vertex at the incoming end of the arc. Terminate branch if a vertex has
more than two incoming arcs.
• When all incoming neighbours have been processed, test a vertex for 2-in 2-out or isolated vertex.
• When a row of vertices has been processed, check for the conservation of pairs.
• Each internal vertex must be lexicographically greater than the top left vertex. This condition will elim-

inate textures that are equivalent by translation. The lexicographical order is determined by assigning
an index to adjacent nodes and constructing a label based on the nodes to which the vertex is connected
as illustrated in Figure 7. Whenever a vertex has a full set of incoming and outgoing arcs, it is compared
to the top left vertex. Since the top left vertex may not yet have its incoming arcs fully determined, the
comparison is based on the lexicographically lowest possible configuration of the top left vertex given
its currently defined arcs.
• For interleaved stitches, if an internode crossing is encountered, the branch is terminated.

Additional validation is performed when a branch of the backtracking algorithm successfully termi-
nates. A check for isometric uniqueness under rotation requires that all nodes are valid under rotation which
can only be determined on completion. While a partial test for isometric uniqueness under translation or
reflection is done at each step, final validation requires the top left node to be fully determined which may
only happen after the last node is processed.
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5 Results

In their comprehensive reference book, Cook and Stott list 262 stitches [1]. Several stitches share a common
traversal pattern but use different combinations of pinning and action sequences. For example, 34 stitches
use a Basic 1x1 traversal pattern like the one shown on the right side of Figure 4 and 15 stitches use the 4x4
Interleaved pattern shown on the right side of Figure 8.

As expected, my algorithm demonstrates an exponential growth in the number of traversal patterns
as the number of nodes increases. The results in Table 1 for “Basic” traversal patterns and Table 2 for
“Interleaved” traversal patterns, show that with as few as 16 nodes we have exceeded the number of patterns
reported by Cook and Stott. A few samples of new traversal patterns discovered using this algorithm have
been worked using a simple “cross, twist, pin, cross, twist” action sequence and are shown in Figures 9 and
10. Following the work of Cook and Stott, samples have been worked in a coarse thread (Coats No. 30
Cotton) to show the detail.

m\n 1 2 3 4 5
1 1 1 1 1 1
2 1 3 1 3 1
3 1 1 24 1 1
4 1 3 1 199 1
5 1 1 1 1 >13000

Table 1 : Number of unique pair traversals for “Basic” stitches

Figure 9 : Two new “Basic” textures discovered using my algorithm.

m\n 1 2 3 4 5
1 1 5 11 32 92
2 2 15 44 140 507
3 3 51 265 1518 9756
4 7 243 2316 27938
5 17 1243 23945

Table 2 : Number of unique pair traversals for “Interleaved” stitches.

In some stitches, it can be a challenge to identify the pair traversal pattern. For example, when many
actions are performed at a single vertex, as is the case for a tally, the resulting node may be elongated or
fat and the internodal distances very short or non-existent. Some stitches do not insert a pin at every pair
crossing which allows the nodes to migrate from strict grid positions and, under tension, pull toward each
other in a central position. However, by abstracting a sequence of actions performed on four threads to a
vertex, it is possible to tease out the pair traversal pattern.
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Figure 10 : Two new “Interleaved” textures discovered using my algorithm.

Cook and Stott document several stitches that do not follow the pair traversal patterns or actions de-
scribed here. They report 5 stitches that use an action called “sewing” which involves a thread looping back
on itself in violation of the monotonic constraint. They present 11 stitches in which a pair of threads is
treated as a single thread in a manoeuver known as a lazy join. This results in a pair traversal that is no
longer 2-regular. Several stitches in their reference book follow the common constraints outlined in Section
3 but do not belong to the subgroups described in Section 3.1. These include stitches using spider motifs,
diamonds and stars. Like the Basic and Interleaved subgroups, the traversal patterns for these stitches can be
described by an additional set of constraints.

Figure 11 : A) Tally B) Sewing C) Lazy join D) Spider E) Diamond F) Star

6 Conclusion

Using a combinatorial approach, I have isolated one aspect of Bobbin Lace production and demonstrated that
there is a much broader range of possible textures than is currently being used. The advantage of exploring
these new possibilities is many-fold. For the Bobbin Lace artist, it extends the possible “colours” available,
potentially enriching the designs created. The impact, however, can extend beyond the art of lace making.
Each Bobbin Lace stitch has unique physical properties – some are flexible while others are rigid; some have
many holes while others are solid; holes can be large or small. The lace maker has fine control of individual
threads and can easily change from one texture to another. For example, a rigid texture can be applied around
the border of a circle with a flexible texture at the centre – all without seams or knots. This might have useful
application in electronic textiles and the development of medical prostheses.
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