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Abstract

A large family of beautiful mechanical puzzles is based on the idea of positioning identical sticks symmetrically in  
space on the 2-fold axes of a polyhedral symmetry group. Many of these designs have a visual richness that gives  
them a sculptural quality. Structures in this family can differ in terms of the symmetry group chosen, the amount of  
rotation of the sticks about the axis, the length, cross sectional shape, and end treatment of the sticks, among other  
parameters.  In certain designs, some sticks are fused together into compound parts.  In addition, wherever two parts 
would intersect, a notch is made in one to make space for the other, and there are many options for how that choice  
is made throughout the puzzle.

This family of designs is explored and a simple method is presented for the reader to produce a wide variety of new 
puzzles. A short program written in Mathematica is used to explore designs in this parameter space and produce the 
overall stick geometry.  Then a separate 3D editing program (e.g., Rhino) provides the constructive solid geometry  
operations that join the sticks, create the notches, and/or shape the stick ends.  Finally,  a 3D printer is used to  
fabricate the components.  In the examples below, I use an inexpensive Makerbot to produce plastic versions of the 
puzzles at minimal cost.  Several examples are presented of this overall process.

1. Introduction

Figure 1A shows an example of a mechanical  puzzle made from twelve identically shaped sticks. By means of 
carefully positioned notches where they partially overlap, the sticks snap together into place. In this design, each 
part mates with six others and they lock each other in relative position once the final part is placed.  A slight flex to 
the parts is required to insert the final piece. Traditionally, a puzzle designer would use trial and error to work out  
the notch geometry, but software presented below makes it easy to design the sticks and notches of this and many 
related puzzles. The user interface for the generating program (written in Mathematica) is shown in Figure 1B.

  
Figure 1: (A) Twelve-stick puzzle design made of ABS plastic, 4 inches.  (B) Design software.
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Figure 2. Example wooden puzzles based on the symmetric placement of sticks. (See text for details.)
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It probably is not obvious to the casual viewer that the centers of the twelve sticks in Figure 1 are at the  
midpoints of the edges of an imagined cube and the angle between each stick and its corresponding cube 
edge is identical.  As such, it belongs to a family of structures derived from a single underlying concept:  
start  with a polyhedron and rotate each of its  edges a fixed amount about the axis that connects the  
midpoint of the edge with the center of symmetry.  By substituting shaped sticks for the rotated cube-edge 
segments, one has a symmetric arrangement of components which can form the basis of an attractive  
puzzle. There are a number of parameters which can be adjusted to give many specific puzzle designs. 
This paper presents the mathematical ideas and usable software for anyone to design and fabricate their  
own original examples in this family.

Many puzzle designers have made their own independent discoveries and creations in this broad field of  
puzzles. No attempt is made here to present the history of these designs, to trace the influence of various 
designers on each other, or to assign anyone credit for original ideas.  Instead, I simply present in Figure 2  
a set of twenty four examples that indicates a variety of commercially made puzzles I am familiar with in  
this family.  The designers and fabricators include Arjeu, Stewart Coffin, Bill  Cutler,  Phillipe Dubois,  
Hiroshi Iwahara, Akio Kamei, and Tom Lensch. The photos (except Fig. 2H) are by Nick Baxter [1], who 
provides a rich data resource from a series of mechanical puzzle auctions.  Some of these puzzles, in  
beautiful woods, are considered works of art by puzzle collectors and sell for thousands of dollars.  But 
the techniques presented here allow one to make functioning plastic versions very affordably. I have not 
seen all of the Figure 2 designs in person, so some may have “tricks” to them beyond the geometric  
features described here.  

Figures 2A-L are based on the twelve edges of a cube, Figures 2M-U are based on the thirty edges of a  
dodecahedron, and Figure 2V is based on the ninety edges of a truncated icosahedron.  In 2W and X, the 
structure and its mirror image are combined, with two diameters of stick.  Fig. 2 does not include related 
examples with magnets, such as the Tetraxis and Hexaxis puzzles by John and Jane Kostick. Coffin [2] is  
an excellent source for puzzle designs and construction techniques, but it does not deal with the range of 
rotations considered here. Slocum [12] describes the internal workings of some examples. Also see [8].

2. Geometry

The geometry of all these puzzles starts with the edges of a polyhedron.  It is easiest to understand the  
case where the edges'  midpoints lie on the 2-fold axes of the polyhedron's  symmetry,  e.g.,  the cube, 
dodecahedron, or tetrahedron. As will be seen from the derivation below, the octahedron gives the same  
results as the cube and the icosahedron gives the same results as the dodecahedron, so the octahedron and 
icosahedron are not considered separately here.  

Figure 3: Rotational positions of one cube-edge stick. Figure 4: Positions relative to rhombic dodecahedron.
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Consider the cube's twelve edges.  Figure 3 shows the process of rotating one of the cube's edges about 
the line that connects its midpoint to the center of the cube. In the puzzle designs we are considering, we  
rotate all the edges the same amount in the same direction (as seen from outside).  Because we rotate  
about a line from the cube’s center to the edge midpoint, each rotated edge remains in one of the twelve 
face planes of a rhombic dodecahedron, as seen in Figure 4. (People who have made spherical tensegrity  
structures will be familiar with this edge rotation idea in that context; it corresponds to how far along one 
tensegrity strut to connect the neighboring struts [3].)

Different choices for the rotation angle give very different visual impressions, as seen in Figure 5.  If we  
define the phase of the rotation so 0 degrees gives the cube, then a few degrees of positive or negative  
rotation gives a structure which is recognizably a cube with a clockwise or counterclockwise twist to the  
edges,  e.g.,  Figs.  5A, B,  and Fig.  2J.   Rotating the edge 90 degrees gives the dual  to the cube,  the  
octahedron, in Fig. 5F.  And a rotation which is a few degrees more or less than 90 gives a structure 
which is recognizably an octahedron with a slight twist to the edges, e.g., Fig. 2L. Between 0 and 90 lies a  
spectrum of intermediate structures which are not as immediately recognizable.  One very special case is  
that at about 35.25 degrees, groups of three sticks are coplanar. Their length can be adjusted so they join  
to form an equilateral triangle and the result is the “orderly tangle” of four triangles as in Fig. 5C, D, and 
Fig. 2H [4]. The design shown in Figure 1 is six degrees from this special angle, so the four triangles can 
be perceived, but each consists of three edges that meet with a slight twist.  Another special case occurs at  
about 54.75 degrees, where sets of three edges become parallel.  Then each of the twelve segments is  
parallel to one of the four “tetrahedral directions,” i.e., each is parallel to one of the long diagonals of the  
underlying cube, e.g., Fig. 5E and Figs. 2A-G.  (The exact angles for these two special configurations are  
half “the tetrahedral angle” of 2 ArcTan[Sqrt[2]] (roughly 109.47 degrees) and its complement.)

A B C

D E F
Figure 5: Rotation of all twelve cube edges simultaneously. (A) -15 degrees. (B) 15 degrees, giving the mirror  
image of A. (C) 34.25 degrees, which makes sets of three sticks coplanar. (D) 34.25 degrees again, with the sticks'  
length increased to show the triangles. (E) 54.75 degrees, which makes sets of three sticks parallel. (F) 90 degrees  
giving the dual to the cube, an octahedron.
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Studying the variety of structures arising for edge rotations in just the range 0 to 90 degrees is sufficient 
to understand all the possibilities. This is because rotations between 0 and −90 are the mirror images of  
these and rotating a line segment by 180+ϴ is equivalent to rotating it by ϴ.  The intermediate rotations, 
ones away from the cardinal points, are the ones I find most visually engaging and lead to puzzle designs 
which are the most difficult to conceptualize during assembly.  They are also the most difficult for the 
designer to work out the geometry of the intersection of the parts, and so these are the cases where the  
software described here is most valuable. Starting from the dodecahedron, the edges can be rotated 90  
degrees to give an icosahedron, and there are special angles making the orderly tangle of six pentagons  
[4] or six groups of five parallel edges, e.g., Figure 2R, S, or U.

Each possible  choice  of  underlying  polyhedron  and edge  rotation  angle  is  the  foundation  for  many 
puzzles, depending on how the edge is thickened into a stick. For a round stick as in Figure 1, we need to 
specify only its length and diameter.  More generally, the cross section need not be circular, and we could 
theoretically choose any shape as the cross section.  However, circles, regular n-gons, and rectangles (of 
various aspect ratios) are the most natural and are found in most of the commercial puzzles of Figure 2.  
When making such puzzles physically from wood or other stock, a constant cross section is natural for  
fabrication efficiency. But these techniques are also applicable to “stick-like objects” with cross sections 
that vary along the length of the stick, as they can readily be produced on 3D printing machinery.

After selecting the stick rotation angle, cross section, and length, another issue to consider is how to  
terminate the ends. A simple cross cut (orthogonal to the length) is easiest if woodworking, but all kinds 
of bevels may be made by mitering.  Sometimes a miter for the stick ends is possible in which they join  
visually with other components of the assembled puzzle, e.g., Figs. 2D, F, or U.  For circular sticks,  
hemispherically rounded ends are a natural option. When designing parts for 3D printing, there are many 
options for terminating the sticks that would be impractical with woodworking equipment.

If there were no contact between sticks, the puzzle could not hold together, and the designer would need 
to modify the parameters. Similarly, sticks in loose contact do not hold together. So, in some designs, 
groups of two or more touching sticks are fused into a single piece. With wood, one uses glue; with  
software, one uses the Constructive Solid Geometry (CSG) operation of Boolean union. Often the chosen 
parameters cause parts to overlap in places, as in Fig. 1. Where two sticks are visualized as overlapping,  
the physical material must be removed from one or the other so there are not two pieces of matter in the  
same place. This is an opportunity to design mating notches in various ways, e.g., there is a half-lap joint 
in Fig 2H, but the simplest is just to “subtract” one stick from the other. In this CSG operation, the  
material in the intersection of the two sticks is removed from one of them, creating a notch which meshes  
with the exterior of the other (unnotched) stick. Because of the symmetrical arrangement of the sticks, the 
intersections are also symmetrically arranged around the polyhedron center. Notches can always be made  
so the sticks are all identical and the puzzle has an elegant symmetry. Or as a variation, each overlapping  
region can be arbitrarily assigned to one of the two sticks, resulting in a puzzle with a variety of different  
piece shapes, which introduces additional difficulties for the solver. A puzzle with convex components  
can always  be disassembled,  but  I  know no automated means  to determine  how rigid a puzzle  with 
notched sticks will be. One simply tries it and learns from experience.

3. Implementation

When using commercial software for 3D design, it is common to work with several packages on one  
project, because each has different features. For this work, I found it convenient to use Mathematica [10] 
for the interactive creation and visualization of the stick geometry.  But Mathematica does not have built-
in CSG operators, so, to make the notches, I found it easiest to export the stick design as a mesh from  
Mathematica and import it into Rhino [11], which has efficient stable operators for subtracting one mesh  
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from another.  Many other CAD programs might suffice for this latter operation, however CSG of meshes 
is difficult to implement and several other commercial programs I have tried crash at this task.
 
Figure 1B shows a screen shot of a Mathematica program I wrote to create the sticks. The underlying  
code is only two dozen lines and can be downloaded from my web site [6]. Mathematica's Manipulate  
operator creates a user interface with sliders that allow the real-time exploration of the design parameters  
[5].  It is fast and easy to change the program and explore additional parameters, so this is just a snapshot  
of my code development, with the following features: By clicking on one of the buttons, the underlying 
polyhedron is selected to be a cube, dodecahedron, tetrahedron, or truncated icosahedron. Sliders adjust  
the rotation angle, length, diameter, and cross section of the sticks. The number of sides can be set to 
three for triangular sticks, four for square sticks, etc., up to a large enough value that it appears as a circle.  
An “aspect  ratio” slider allows the circle cross section to be changed into a tall  or  wide ellipse and 
changes the 4-sided cross section to vary from a square to a tall or wide rectangle.

As the sliders are adjusted, the visualization changes accordingly.   The view can be rotated with the  
mouse to examine it from any side. Figure 1B shows how to replicate the design of Figure 1A.  I pressed 
the “cube” button, which determined that there are twelve sticks.  I explored with the slider and ended up 
with a 29 degree angle that approximates three triangles. I chose twelve sides per stick to create a roughly 
circular cross section. I picked the radius so there is enough overlap to lock the parts together. And I  
adjusted the length slider until I liked the aesthetics; each stick extends just slightly beyond its outermost  
intersection with another stick. Any of these parameters could easily be changed.

When the parameters are set as desired, executing an Export command in Mathematica creates a file with  
the stick arrangement in mesh form. Several file formats are suitable for this as long as the user chooses  
one which Mathematica can export and Rhino can import.  I usually use the stl format, which provides 
what is needed if I also want to create the entire assembled puzzle on a 3D printer.

To join sticks, create notches, or shape the end of the sticks, I import the mesh into Rhino and use its CSG 
operators. There are many ways to make notches. Figure 6A shows an example in which I have replicated 
Stewart Coffin's “Hexasticks” puzzle of Figure 2A.  One Hexastick part has been selected and a CSG 
operation is  about  to  be made  in  which two other  sticks  are  subtracted from it.   This  produces  the  
common Hexastick piece with two notches, shown at top in Figure 6B.  Depending on which other sticks  
were chosen to be subtracted, one, two, three, or four notches might be made in any stick, giving a variety  
of possible puzzle pieces, some of which are seen in Figure 6B.

Figure 6: (A) Selecting sticks for CSG in Rhino.  (B) Assortment of possible notches.  (C) Sphere to trim stick ends.
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Within a 3D design program like Rhino there are many operators available that may be used to shape the 
ends of the sticks. In order to make my own variant of this classic puzzle, I made some nonstandardly 
notched parts shown in Figure 6B and I trimmed it all with a sphere as in Figure 6C.  After trimming, the 
sticks have a portion of a sphere as their end caps, so when assembled it is shaped like a ball. Note that  
this spherical end would not be simple to fabricate in wood, but is easy for a 3D printer to make. 

Splitting sticks lengthwise, as in Figures 2E, F, and U, gives two half-sticks per edge. Creating these and 
joining groups of them into a single part is straightforward in Rhino, but not illustrated here.    

The final step in Rhino is to export stl files of the parts for 3D fabrication. The stl files can be sent to a 3D 
printing service bureau for fabrication. Alternatively, one could fabricate wood or metal pieces from these  
designs, but this requires skilled craftsmanship and often one must first make special purpose jigs for  
accurate cutting [2].  CNC routing is also possible starting with stl files, but I have not tried it.

4. Examples

In  the  examples  of  this  paper,  I  used  my own Makerbot  [9].   This  is  one  of  a  new generation  of  
inexpensive 3D printers aimed at the hobbyist and maker market. While it has many limitations compared 
to industrial  machines,  it  cost  under $1000 and is  adequate for the basic production of many forms,  
including these puzzle parts.  My model has a conveyor belt for its build platform, which lets me set up a 
series of parts which are built one after the other without my intervention and deposited into a bucket.  
Compared to more expensive commercial 3D printers, the parts are somewhat rough and some sanding 
and scraping is usually required to clean them up so they fit together well.  So this process is not for mass  
production, but it is quite suitable for making one-of-a-kind puzzles and prototypes.  Typically 15 to 25  
minutes is required per part for the puzzle pieces in Figure 1 and below—a quick delivery time.

Figure 1 shows the first puzzle I made by this technique. I used an uncolored ABS plastic and tried to dye  
the parts in four colors.  The dye adhered weakly, resulting in pastel colors. My plastic version of the 
spherical Hexastix variant of Figure 6 is shown in Figure 7.  Figure 8 shows a dodecahedron-based 30-
stick design with square sticks and an intermediate angle.  Its outer form is similar to Figure 2R, although 
I have not seen that puzzle in person, so I do not know if its notches are the same as mine.

Figure 7: Spherical variation on Hexasticks, 3 inches. Figure 8: 30-stick puzzle of square sticks,5 inches.
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Another variation is to combine a design with its mirror image, as in Figs. 2W and X, where the mirror 
image structure has thinner sticks.  A checkbox in the Fig. 1B software implements this feature.  The  
mirror images can also be nested, by assigning them different overall scales. Figure 9 shows an example  
which combines a slightly clockwise and counterclockwise cube, e.g., Fig. 5A and B, to make a very rigid 
puzzle. Twenty-four sticks with the same length and diameter lie on the edges of two concentric cubes.

Figure 9: Example with mirror images. Figure 10: Six-part truncated tetrahedron.

If the edges of the underlying polyhedron are not all equivalent, then there will be more than one shape of  
piece, e.g., Fig. 2V has thirty edges of one type and sixty of another.  One can take this further, based on 
larger Goldberg polyhedra, and work towards “Nailbanger’s Nightmare” [7].  But a practical example is 
the truncated tetrahedron of Fig. 10. There are six pieces; each is a stick separating two hexagons unioned 
to two sticks separating a triangle from a hexagon, which were shortened and given rounded ends.

Many variations are possible for which there is insufficient space here, e.g., fancy notches can partition 
the intersection of two sticks in many ways. Simple six-piece burr puzzles are of this form. They can be  
derived with this software if one starts by selecting a tetrahedron as the underlying polyhedron. 

5. Conclusions

With the software presented here, anyone with Mathematica can explore a wide range of symmetric stick 
assemblies based on rotating the edges of a polyhedron. If the designs are imported into a 3D editing 
program, the components are easily notched into sticks which snap together into a puzzle. Many options  
are possible, including joining some sticks together, or cutting sticks in half. This paper has emphasized 
the puzzle applications, but the assembled forms can also be considered as geometric sculpture. It  is  
hoped that interested readers will continue exploring from here.
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