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Abstract 
 

In many examples of repeating patterns in the art of various cultures, the use of symmetries to analyze those 
patterns does a good job of capturing the repetition intended by the artist. In other cases, however, the artist uses 
precise forms of repetition that are not well modeled by mathematical symmetries. The analysis of the orbits of 
motifs under the action of the symmetry group both reveals situations where this happens, and gives us direction as 
to what else is needed to model the artists’ apparent intent. The ways in which the art of different cultures need 
different types of extensions of symmetry ideas reveals structural differences in the design art of those cultures, and 
hence in their ethnomathematics. 

 
 

1. Introduction & Terminology 
 
In common usage, we can think of the “orbit” of a moon, or astronomical 
body, as all of the places to which that object moves under the forces of 
gravity. In adapting this terminology to symmetry groups, we say that an 
“orbit” of a motif is all of the copies of that motif to which it moves under 
the action (or “force”) of the symmetry group. As an example, consider 
figure 1, a design of the White Hmong sub-group of the Hmong people of 
Vietnam, Laos, and China. Here the symmetry group of the design is the 
dihedral group D4, i.e. rotations of ¼-th, along with reflections across four 
different lines (horizontal, vertical, and diagonal). Thus the 4 motifs on the 
inside of the design all lie in one orbit, while the outer ring of 8 motifs fall 
into two orbits: one on the main compass points, and the other on the 
diagonal points. This is also an example of why seeing such orbits has 
cultural, i.e. ethnomathematical, connections: The double spiral motif, 
referred to as the “snail” by Hmong artists, is used by many Hmong ethnic 
sub-groups. However, as best as we can tell, this use of central symmetry, 
with multiple orbits of the motif, occurs only in the art of the White Hmong sub-group. The Green 
Hmong also use this motif, but invariably use it in strip patterns and planar (wallpaper) patterns. Figure 3 
(without the extra dashed lines) shows the snail motif as used on a dress created by a Green Hmong artist. 
This latter design has 1 orbit of the snail motif, while the former has 3 orbits. By traditional symmetry 
analysis, we might conclude that the Green Hmong use “more sophisticated” symmetry groups, but 
alternatively we could say that the White Hmong use “more sophisticated” multiple interlocking orbits. 
 

When a design has only one orbit of an artistic motif, we suggest that the mathematical symmetry 
group of that design is generally a good model of the pattern repetition built into the design by the artist: 
Any repetition of the motif from the artist’s viewpoint is modeled by a symmetry from the 
mathematician’s viewpoint. Conversely, if a design has a large number of orbits of a motif, then it is 

Figure 1: A (simplified 
version of a) design of the 
White Hmong, with 3 orbits 
of the snail motif. 

Bridges 2011: Mathematics, Music, Art, Architecture, Culture

337



likely that the symmetry-group analysis of the pattern gives an inappropriate description of the underlying 
artistic repetition. This happens, for example, with randomly placed motifs and with aperiodic tilings, e.g. 
[4, chapter 10]. Our focus in this paper is on intermediate situations: When a design has a modest number 
of motif orbits, more than one, and there is an artistic impression of those motifs being “equivalent.” In 
this case, the symmetry-group approach appears to be capturing some of the design structure intended by 
the artist, but very likely has not captured all of that design structure. Here we want to identify where the 
symmetry-group approach has failed to capture the apparent artistic intent, and use variations of this 
approach to capture some of the apparent missing design principles of the artist or craftsman.  
 

Although we do not discuss the topic in this paper, we should note that our previous statement, that a 
single orbit of a motif usually implies a successful mathematical model of the design, can fail when the 
motif itself has internal symmetries which do not extend to the pattern as a whole. Such designs could be 
analyzed using the techniques of this paper by artificially breaking those symmetric motifs into multiple 
pieces, i.e. by decomposing the motifs into their “fundamental regions.”  
 

Much of this paper consists of examples of specific types of cultural art where the symmetry-group 
approach to design analysis appears to need extensions of one form or another to fully capture the 
underlying design. As with the White Hmong/Green Hmong example, the ways in which the symmetry 
analysis needs to be extended often seems to be culturally specific, suggesting that these reflect culturally 
important artistic values and design principles of those cultures. 
 
 

2. Double Bands vs. Wallpaper Patterns  
 
A common design tactic that gives rise to multiple motif orbits occurs if we construct a single strip 
pattern by combining two copies of a smaller strip pattern. We call these “double-banded” patterns. The 
pattern of figure 2, from the Nazca culture in Peru (c. 500 C.E.), shows an example of such a design. Each 
of the strips alone has a p111 symmetry pattern, and they define a “perfectly colored” symmetry pattern 
on this design. However, the pattern as a whole has two orbits of the basic 3-step staircase motif, because 
there is no symmetry that moves the lower strip to the upper strip. The pattern has “apparent” translations 
along the indicated arrows, but applying those translations to the double-banded pattern would generate a 
2-dimensional wallpaper pattern, which is not implied by the pattern itself.  
 

 
Figure 2: A Nazca (pre-Incan) Peruvian design, re-drawn from [6], p. 183, figure 274. 
 

Washburn and Crowe [8, p. 53] suggest that when a pattern has two adjacent strips, we should 
evaluate it as a 2-dimensional wallpaper pattern. However, their discussion of this point accompanies the 
analysis of pottery fragments, where it may be reasonable to infer the existence of a larger pattern from 
existing fragments. In designs such as figure 2, we know that this is the full extent of the pattern. If we 
choose to interpret this as a wallpaper pattern, at least three substantial problems arise: 
  

1) Such an interpretation implies a design pattern with no evidence that this was the artist’s intent;  
2) How to extend a double-banded pattern to a larger wallpaper pattern may be ambiguous; and  
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3) We can extend two completely different double-banded patterns to get the same wallpaper pattern, 
implying that something important about the design has been lost in the process of this extension.  

 
The Green Hmong dress pattern of figure 3 is 

an example of problem #3. Two different strip 
patterns are shown embedded within the design. If 
either of these strips were extended to a wallpaper 
pattern, we would, get the design shown here. And 
yet those two strip patterns are dramatically 
different. The horizontal pattern has a strip 
symmetry group of pma2, has one orbit under those 
symmetries, and the motif repetition is fully 
described by those symmetries. Conversely, the 
vertical strip has symmetry group p1m1, has two 
orbits of a “half-snail” motif, and the design repe-
tition is not captured by the strip symmetry group 
without the use of additional descriptive tools. 

 
As an example of the second problem, the author has, on multiple occasions, used a worksheet in an 

Ethnomathematics course asking students to attempt to extend the pattern of figure 4a to a 3rd and 4th row, 
while maintaining the design of the first two rows. This design is re-drawn from a carving on the front of 
a Fijian canoe, and is another example of a design where we know that the artist carved only two rows. 
Consistently, about ¾-ths of the students extend the pattern as shown on the left in figure 4b, while the 
other ¼-th extends it as shown on the right. These two wallpaper patterns have different symmetry 
groups. Allowing color-reversing symmetries, the extension on the left has one orbit of triangles while the 
one on the right has two orbits. Since many people extend this pattern in each of these two “natural” 
ways, we conclude that presuming what the artist intended, even if they thought of it as part of a larger 
wallpaper pattern, is unwarranted.  

 
Figure 4a: A carving from the front of a Fijian 
canoe. The design consists only of these two rows 
of triangles, and consists of 2 orbits of triangles. 
Black diamonds show rotation points. 

 
 

 
Figure 4b: Two ways that students extend this design when asked to find a “natural” continuation. 

 
Instead of artificially extending a pattern such as those of figures 2 and 4a, we suggest that it is more 

natural to leave the pattern as it is, notice the symmetries which do exist, but also describe what additional 
actions would result in recognizing the equivalence of the different orbits in the two strips. This analysis 
is quite different in these two examples. The designs of figures 2 and 4a each have two orbits of motifs, 
but distributed quite differently. The Nazca design of figure 2 has all the motifs of the bottom strip in one 

Figure 3: A wallpaper planar design of the Green 
Hmong, demonstrating two different strip patterns 
within the design that can be viewed as generating 
the entire design. 
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orbit, and all those of the top strip in the second orbit. There is no symmetry that interchanges the two 
strips. But the Fijian canoe design has a color-reversing rotation that interchanges the two strips. Here one 
motif orbit contains the gray triangles of the bottom strip and the white triangles of the top strip, while the 
other orbit contains the remaining triangles. While we can describe the double-banded design of figure 4a 
using the “translate one strip” approach, a better approach is available, one that reveals “hidden 
symmetries” within the design. If we separate one of the two strips, as shown in figure 5, and look at the 
symmetries of that strip alone, the traditional symmetry analysis shows the equivalence of those two 
orbits of triangles. But the “translate one strip” approach by itself does not show the equivalence of these 
two orbits. To mathematically notice this design repetition within the pattern, we must use the “divide & 
conquer” approach of analyzing one strip in isolation. 
 

Figure 5: A single strip of the Fijian canoe pattern 
has rotation points, at the black dots, which are not 
symmetries of the double-banded design. 

 
The examples of figures 3 and 4 indicate, as the first 

“problem” in our list suggested, that extending a double-
banded design to a wallpaper design may be unjustified. In at 
least some cases, such an extension seems to be a clear 
violation of the artistic intent. Consider, for example, the 
American Indian basket of figure 6. In this double-banded 
pattern the two bands overlap each other. As with the Incan 
designs, we can view one band as a translate of the other. But 
if this was meant to be a portion of a wallpaper pattern, then 
portions of the band above the top one would have narrow 
points extending down into the visible design. The artist 
appears to be deliberate in not viewing this as part of a larger 
design. 
 

The use of 2-orbit, double-banded patterns are common, 
but not exceedingly so. So it is an impressive cultural 
phenomena to see the persistence of these designs across 
centuries of Peruvian culture. Our references show many such 
examples in Peru from the 15th century [1, pp. 176-179], 14 
examples from the 6th–8th century [3], 16 examples from the 4th–6th century [6], and 4 examples dating as 
far back as the 5th century B.C.E. [7]. These examples also show a persistence in how their two strips are 
related. In such patterns, one band can be a copy of the other via any of the following general actions: 

 

1) A translation of one strip to generate the second (see figures 2 and 6); 
2) A translation followed by a vertical reflection, i.e. a glide reflection (not shown here); 
3) A mirror image, i.e. a horizontal reflection (see figure 7);  
4) A rotation of the bottom strip to the top (see figure 4a and 8); or 
5) Some combination of the above. 
 
So it is impressive that of the 34 early examples from [7], [6], and [3], 23 are of type (1), 10 are of 

type (2), and only 1 is of any other type. This contrasts dramatically with the double-banded patterns of 
Papua New Guinea, in the following section. The examples we show there all fit into categories 2–5, and 
of all of the examples we have seen from this region, we are unfamiliar with any examples of double-
banded strips of category 1. While we do not discuss possible reasons for these differences here, we 
believe that this demonstrates a clear cultural difference in these two cultures’ use of symmetry in artistic 
design work. 

Figure 6: An American Indian basket 
from northern California, possibly 
Hupa origin, early 20th century. Photo 
used courtesy of the Logan Museum of 
Anthropology, Beloit College. 
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3. Art of Papua New Guinea 
 
Double-banded designs are also common in the art of 
Papua New Guinea. Figure 7 shows several examples 
of such designs. The objects here all have mirror 
reflections between the two halves of the design. In 
each case, copies of the main motif fall into two 
orbits. The equivalence of the two motif orbits can be 
modeled by slicing the pattern in half, and using the 
symmetries of a single strip to connect those orbits. 
As with the Incan double-banded patterns, extra strip 
symmetries do not extend to the entire design. With 
the paint board (7c) and the gope board (7d) these 
“hidden” symmetries are color-reversing.  With the 
gope board, that hidden symmetry is a rotation that 
interchanges the red wave motifs with light brown 
wave motifs. In all other cases, there is a glide 
reflection that interchanges the motifs on the “inside” 
of the pattern with the motifs on the “outside” of that 
pattern.  
 

There is a significant similarity in the motifs of 
these designs. Both the three-legged dog (7a) and the 
man (7b) use the same “Y” shaped motif, which 
alternates between pointing in and pointing out. The 
war shield (7e) and the paint board (7c) use the same 
double-leaf motif, which is closely related to the “Y” 
motif. Nevertheless, the similarity across the 
mathematical structures of these designs is even 
stronger than the similarity in motifs. Instead of one 
strip being a translated version of the other, as in our 
previous examples, here one strip is a mirror image 
of the other. Each individual strip contains two orbits 
of the motif (with respect to the symmetries of the 
full design), and there is a glide reflection within an 
individual strip that “reveals” the equivalence of 
those two orbits. The fact that this particular 
mathematical structure arises so frequently in Papua 
New Guinea, and infrequently in other cultures with which we are familiar, indicates that this nested 
“pattern inside a pattern” structure reflects an artistic tradition of Papua New Guinea. The three-legged 
dog (7a) gives interesting evidence that our approach of separating a single band from the double-banded 
pattern for analysis may correctly reflect the artistic intent. The photo here is taken looking from above, 
so that most of the pattern is visible. But when viewed straight on, with the dog’s back at eye level, what 
is visible is exactly one of the strips! 
 

Further evidence that this “pattern within a pattern” design structure is deliberate comes from other 
Papua New Guinea artifacts with additional levels of patterning, such as the horn on the left in figure 8. If 
we were to unroll this design from the cylindrical horn, we would get the design shown on its right. Here 
the “tree branches” have a mathematical structure much like the artifacts of figure 7: a translation and 
rotation in the full pattern, with two orbits of tree branches whose mathematical equivalence is seen only 
by separating one strip from the other. That analysis would then recognize the design equivalence of all 

Figure 7: Papua New Guinea art: (a) 3-legged 
dog; (b) Closeup of a man; (c) Paint board; (d) 
Gope board; (e) War shield; (f) Wings on a spear. 
The war shield is used courtesy of the Logan 
Museum of Anthropology, Beloit College. All other 
objects are in the Ethnomathematics collection of 
the Mathematics Department, Beloit College. 
(Objects from Papua Gulf and the Asmat region.) 
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the branches, but not of the 
leaves along the branches. Those 
leaves are connected by a glide-
reflection acting on a single 
branch. Thus if we use the 
“traditional” symmetry-group 
analysis of this design, we see 6 
orbits of the leaf motif. If we 
allow the additional rotation 
symmetries within a single strip, 
we “see” that there are only three 
orbits of leafs (A+a, B+b, and 
C+c). But, only if we allow 
ourselves to apply symmetry 
groups to the pattern of the 
leaves along an individual 
branch, does the mathematics 
“understand” the equivalence of 
the leaves, which appears to be the 
artistic intent. 
  
 
 

 
4. Maori Rafter Patterns 

 
Maori rafter patterns are a well-studied example of interesting and complicated strip patterns, e.g. [1, pp. 
166-172]. The approach of this paper can be used to re-discover some of the design aspects of these 
patterns. Three examples of Maori rafter patterns are shown in figure 9 (these are each sections of longer 
strip patterns). With the top two patterns, the combination of color-preserving and color-reversing 
symmetries “sees” a design with two orbits of a broadleaf motif shape. If not for the circled symmetry-
disrupting features, a “baby fern” (or “scroll”) motif, these broadleafs would fall into a single orbit. This 
is a very common feature in Maori art: the baby fern is often used to disrupt symmetries of a larger 
pattern. As others have noted, a full description of the symmetry thus requires a description of the pattern 
both with those ferns in place and with them removed. The orbit analysis of this paper leads to the same 
conclusions: There are two orbits of the leaf motif using standard symmetry analysis; and some additional 
descriptive tool is necessary to mathematically “notice” the equivalence of those orbits. The bottom left 
figure shows another Maori rafter pattern with several of these baby ferns. If we remove those ferns, we 
discover a set of “wave” motifs shown on the right, in two orbits, whose artistic and mathematical 
structure is nearly identical to the Papua New Guinea gope board pattern of figure 7(d)! 
 

       
Figure 9: Three Maori rafter patterns (from Hamilton, via WikiMedia Commons). 

Figure 8: A horn from Papua New Guinea, along with a 
schematic showing the “unrolled pattern”. Rotations of the full 
double-banded pattern and of the lower strip in isolation are 
indicated by diamonds. From the Ethnomathematics collection 
of the Mathematics Department, Beloit College. 
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5. Afghani Dress Flowers 
 
There are two common types of symmetric 3-colored patterns: Those with one third of the pattern in each 
color, and those with the colors distributed ½, ¼, and ¼, i.e. in ratios 2 : 1 : 1. In this later case, we expect 
there to be symmetries which fix the dominant color while interchanging the two minor colors, and 
symmetries which interchange the major color with the union of the two minor colors. An example of 
such a color structure is shown in the beaded “dress flower” of figure 10, from the Pashtun region of 
Afghanistan. To its right, we’ve indicated the original colors of the 8 motifs in this design. 
 

   

Figure 10: An Afghani 
dress flower of the 
Pashtun region with motif 
colors in the ratio 2:1:1 
(Red : Green : Blue). 
From the author’s 
personal collection. 

 
 
 

 
The standard approach to analyzing color symmetries (e.g. [4, chapter 8]) is to require each 

symmetry to permute the colors. With this constraint, the dress flower here would have two orbits of 
motifs: The red in one orbit, and the green and the blue in the other orbit. Thus to capture the apparent 
artistic intent of the equivalence of the sets {Red} and {Green, Blue} we must broaden our concept of 
colored symmetries to allow for symmetries that interchange one set of colors with another set. The 
cultural examples with which we are familiar involve only this one extension: a 3-color pattern where we 
allow a “symmetry” that interchanges the dominant color with a union of the other colors. 
 

However, several of these Pashtun (Afghani) dress flowers contain an additional symmetry-
disrupting element. We have, or have seen, several examples of such dress flowers where most of the 
motifs would have a color symmetry group like that of figure 10, but a single additional motif disrupts 
this symmetry. For example, the Afghan dress flower shown in figure 11 has a single orange “M” motif 
that dramatically disrupts the overall design repetition. If the orange motif was removed, and the others 
re-aligned, we would have a standard, 3-color, 2:1:1 design. But with the orange “M”, the only symmetry 
is the right-to-left reflection, leaving us with 5 orbits of the motif. Again, this is a signal that the 
symmetry analysis has not captured the design intent of the artist. That this is artistic intent, and not 
accidental, seems to be implied by the dozen or more examples we have of such dress flowers with this 
very specific symmetry disruption, and the use of a special, otherwise unused, color for the one disrupting 
motif. 
 

Figure 11: A beaded dress flower from the Pashtun 
region of Afghanistan. The “M” motif shown on the 
right is repeated multiple times around the circle (7, 
9, 11, and 13 times in various examples we have), 
beaded in different colors. Each of these examples 
has an overall color-regular pattern disrupted by a 
single “M” of a contrasting color. 
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6. Some Related Work 
 
Many authors have investigated aspects of designs similar to those described here. We mention only a 
few particularly relevant sources. Washburn & Crowe [8, chapter 7] discuss in detail “Problems in 
Classification.” This includes discussion of examples, similar to the Maori art and Afghani dress flowers, 
where it may be appropriate to ignore some symmetry-disrupting elements. They also discuss “compound 
patterns,” where the appropriate analysis may be to separate a design into two (or more) component 
pieces, each analyzed separately. These compound patterns may be “layered,” such as with a background 
pattern of one symmetry type, and a foreground pattern of another. Bérczi [2] is an analysis of a large 
corpus of such compound designs from Eurasia. These patterns are another category of designs where our 
“orbit analysis” would reveal the necessity of symmetry analysis beyond the traditional symmetry groups. 
Of course this is an example where such deeper analysis was already recognized. 
 
 

7. Conclusions 
 
In analyzing the pattern designs of cultures, the identification of the symmetry groups often does a 
thorough job of capturing the design repetition that the artist has embedded in their art. In some cases, 
however, the mathematical symmetry group does not capture the full design repetition, and hence may 
fail to capture the full design intent of the artist. Many cultures find the tension between regularity and its 
disruption particularly appealing, and express that tension in various ways. 
 

To find the symmetries within a design, we look for symmetries that move motifs to each other, and 
look at symmetries of a motif that extend to symmetries of the entire design. In doing so, we can 
determine if the formal symmetries of a design result in all motifs lying in the same orbit. When this does 
not happen is, we claim, when the mathematical-artistic analysis gets interesting. While this may mean 
that symmetry groups are an inappropriate tool for analyzing that design, we argue that in many cases this 
means, instead, that we need to be more creative in our use of symmetry analysis. In these cases, 
modification of the mathematical approach can complete the modeling of the design repetition. The 
particular type of modification(s) that are required are often specific to a particular culture, and the 
culture-specific aspect of their designs is an insight into the ethnomathematics of that culture. In some 
cases discussed here, we believe we may have insight as to the reasons for the use of specific symmetry 
variations; in other cases the art requires more study to find such reasons. But it is the symmetry analysis 
that raises the questions. 
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