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Abstract
“AA Patterns” is the collective name of a recently introduced algorithmic art, where a simple affine 2D transformation
is employed to generate aesthetic patterns. AA Patterns are controlled by a single real parameter between 1 and 2.
This paper presents examples of how mathematical analysis can help in selecting and tuning the pattern parameter in
such a way as to attain certain features in the generated pattern.

1 Introduction

“AA Patterns” is the name of a new algorithmic art comprising symmetric pixel patterns generated from a
simple affine 2D transformation with one parameter. AA Patterns were first introduced in [2], along with
detailed technical analysis and some generation and coloring algorithms. In Section 2 we briefly provide the
reader with essential background about these patterns, then we discuss in subsequent sections some ideas
for the objective selection of the parameter, and we show how certain structures of real numbers manifest in
AA Patterns.

2 AA Patterns Overview

Consider the transformation [
X
Y

]
=

⌊
1
2

[
α −1
1 α

][
x
y

]⌋
1 < α < 2, (1)

which maps integer points (x,y) in a source plane to the corresponding integer points (X ,Y ) in a target plane,
using the floor function to quantize real numbers to integers. There are target points to which no source
points map, and the set of all these target points is called an AA Pattern. Any real number α between 1 and
2 is associated with a unique AA Pattern, designated as AA(α).

Figure 1 shows example AA Patterns. Notice how the points that make these patterns tend to group in
symmetric clusters. We will elaborate on this observation further, so let us define some terms to describe
AA Patterns:

Levels: The constituent clusters of an AA Pattern come in varying levels of complexity, as in Figure 2. We
will use the term ‘level n’ to mean both the nth level of complexity, and the clusters at that level. In all
AA Patterns, Level 1, the simplest, is made of either isolated points, or grids of points.
There are also some points which do not belong to a specific cluster. Instead, these points fill the
pattern outside the various clusters. We have colored different levels in different colors throughout the
illustrations in this paper.

Density: The patterns AA(94/53) in Figure 1(b), and AA(89/50) in Figure 2, have identical clusters at
levels 1 and 2. Notice, however, that AA(89/50) is crowded with level 2 clusters, in contrast to the
sparse appearance of these clusters in AA(94/53). We say that level 2 is denser in AA(89/50) than in
AA(94/53). In section 4 we will see an example of how the density of levels relate to the parameter α .
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(a) (b) (c)

Figure 1 : Example AA Patterns: (a) AA(51/28), (b) AA(94/53), and (c) AA(53/30); colored to
reveal details. Notice how points tend to group in symmetric clusters, and notice the apparent
gaps between the clusters.

(a) (b)

Figure 2 : (a) AA(89/50) is built from 3 distinct types of clusters (b), at varying levels of
complexity. The smallest tile of this pattern contains 25 level 1 clusters of 1 point each, 25 level 2
clusters of 12 points each, 1 level 3 cluster of 336 points, and 860 unclustered points. Notice how
each level 3 cluster has pockets for housing 9 level 1 clusters and 4 level 2 clusters.

The natural question about AA Patterns is how to select the parameter α . Indeed, there is an infinitude of
real numbers between 1 and 2, and it is desirable to have a way to know which values of α will generate
patterns with some specific set of features. In the rest of this paper we will demonstrate how mathematical
analysis could help in achieving this goal.

3 Square Roots

It was shown in [2] that an irrational parameter α generates an aperiodic AA Pattern, whereas a rational
parameter α = p/q , p, q ∈N, generates a periodic pattern AA(p/q), with translational symmetries over the
steps

(kp− lq,kq+ l p) k, l ∈ Z . (2)

Even when p/q is only a close approximation to α , then the pattern AA(α) tends to repeat, with small
discrepancies, over the same steps as in (2). They are these discrepancies that distinguish AA Patterns from
simple tiling patterns.
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Thus, the best rational approximations of α manifest in the distances between repeating details in the
pattern, and if we have a method to understand or control the distribution of the best rational approximations
of α , then that method will help us predict or control the associated pattern. Continued fractions offer this
sought after method, and square roots offer good template parameters to start with. Indeed, square roots (and
all quadratic irrationals) have periodic continued fraction expansions, and hence have regular distributions
of best rational approximations. Let us make a quick review of this. Let s be a non-square integer, and let

p/q≈
√

s p,q ∈ N . (3)

The closest p/q can come to
√

s is when
p2− sq2 =±1 . (4)

This is the Pell equation [3]. Now suppose that another pair of integers {p′,q′} also satisfies equation (4),
and that {p′,q′} is linearly related to {p,q}:[

p′
q′

]
=

[
a b
c d

][
p
q

]
a,b,c,d ∈ Z . (5)

Substituting p′ and q′ from (5) into (4):

(ap+bq)2− s(cp+dq)2 =±1 ,

or
(a2− sc2)p2 +(2ab−2scd)pq− (sd2−b2)q2 =±1 . (6)

Comparing (6) to (4) we get:

a2− sc2 = ±1 , (7)

sd2−b2 = ±s , (8)

ab− scd = 0 . (9)

From these three equations we can see that a = d and b = sc. It remains, then, to solve (7) which is, again,
Pell’s equation. It is known to have a solution for all s in the positive case, hence it is always possible to
find linearly related best rational approximations of square roots that satisfy (4). But we are not solving for
s! We are actually interested in a and c. Indeed, a bit of algebra shows that the set of {p,q} pairs that solve
equation (4) forms the sequences

pn = 2apn−1∓ pn−2 , (10)

qn = 2aqn−1∓qn−2 , (11)

for which
lim
n→∞

pn+1

pn
= lim

n→∞

qn+1

qn
= a+ c

√
s . (12)

If the limiting ratio in (12) is too large, the best rational approximations of α are too far apart, so are
the partial-repetition steps of the pattern. We should therefore search for relatively small values of a and c.
One way to do so is to set c and then find s for different values of a. Thus, (7) should be re-arranged to read

s =
a2±1

c2 . (13)

When c is 1, (13) solves to
s1 = {3,8,15, . . .} (14)
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for the minus case, and
s2 = {5,10,17, . . .} (15)

for the plus case. Square roots of these are all candidate template parameters to start from, after applying
the suitable integer offset F that brings α back into the the range (1,2), as required in the transform (1).
Experimentation revealed that the group of patterns AA

(√
s1−F

)
, and the group AA

(
F−√s2

)
, constitute

two families of AA Patterns characterized by common features. We will call these two families of patterns
the s1 and the s2 families, respectively.

Figure 3 shows example s1 and s2 patterns. Let us take AA(
√

3) as a reference, and make a short
description of it. Each cluster in AA(

√
3) looks like a tilted ‘#’, with two arms in each of the East-of-North,

South-of-East, West-of-South, and North-of-West directions. Each cluster is surrounded by a ring of 12
clusters from the lower level, and each cluster houses one cluster from the lower level in the middle,
and houses 16 clusters from the next lower level, and many more from each of the lower levels. These
relationships are recursive. For example, each of the surrounding clusters has its own suite from the lower
levels. More important, there is an apparent self-similarity between levels, and each level looks like being
synthesized from parts of the lower level.

The other s1 patterns are similar to AA(
√

3), but have increasing densities at all levels. For example,
the single lower-level cluster in the middle becomes a grid of clusters, the two arms become many arms, and
the surrounding ring becomes a band of rings. The corresponding patterns from the s1 and s2 families have
the same general features, but the latters have longer arms than the formers, as can be seen in Figure 3.

The metrics (the distances between repeating details) in s1 and s2 patterns reflect sequences obtained
from (10) and (11). For example, the metrics of AA(

√
3) manifest the sequences {1,4,15,56, . . .} and

{1,3,11,41, . . .} (seq. A001353 and A001835 in [5]). A unique property of AA(
√

3) is that
√

3 and the
limits in (12) are related to the trigonometry of multiples of π/6, and for this reason the pattern also exhibits
a sort of rotational symmetry around this angle which divides the circle uniformly.

4 Continued Fractions

In the previous section we have selected square roots of two sets of integers as template parameters for
AA Patterns, and in this section we will illustrate how to tweak these initial parameters in order to control the
patterns. For this purpose we will investigate the continued fraction expansions of our template parameters.
We will write continued fractions in the form

α = [α0; α1, α2, · · · ] .

Further, we will use curly brackets {} to enclose a portion of the continued fraction that repeats zero or more
times, or possibly repeats forever if it is the last entry.

Equations (10) and (11) describe the convergents of the parameter α , in terms of the two preceding
convergents. In this form, the equations essentially tell that subsequent entries of the continued fraction
expansion of α are equal:

αi = 2a; a = 2, 3, 4, · · · , (16)

but the s1 parameters use subtraction in their continued fraction, like
√

3 = 2−1/(4−1/(4−1/(4−1/ · · ·))) .
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(a) (b)

(c) (d)

Figure 3 : (a) AA(
√

3) and (b) AA(4−
√

5) are the first patterns in the s1 and s2 families,
respectively, and (c) AA(

√
8−1) and (d) AA(5−

√
10) are the seconds. Notice how the s2 family

of patterns have longer arms than the s1 family, and notice that the second pattern in each family
is denser than the first, at all levels, and that its clusters has one more arm in each side.
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(a) (b) (c)

Figure 4 : (a) AA([1; 1, 2, 1]), (b) AA([1; 1, 2, 1, 2, 1]), and (c) AA([1; 1, 2, 1, 2, 1, ,2, 1]),
showing how a new higher level appears on adding a new period to the continued fractions
expansion of α compliant to (17) and (18).

When the appropriate offsets are included, and if we restrict ourselves to addition only in continued fractions,
we find that the parameters of s1 patterns have the periodic form

√
s1−F = [1; 1, {2x, 1}] x = 1, 2, 3, · · · , (17)

and the parameters of s2 patterns maintain the periodic form

F−
√

s2 = [1; 1, 2x+1, {2x+2}] x = 1, 2, 3, · · · . (18)

Let us now try some tweaks on our template parameters. The reader is also encouraged to experiment
himself using the the interactive Java applet which the author has made available online [1].

Truncated Patterns: The first tweak that might come into mind is to truncate the infinite continued fraction
of the irrational α at some period. It was found that truncating the continued fraction to few periods limited
the constituent clusters of the pattern to few levels. Seen the other way round, each additional period in the
continued fraction corresponds to a new level in the pattern, as illustrated in Figure 4. We will use patterns
truncation in our subsequent examples to limit the patterns to level 4, which should be sufficient for the
illustrations.

Intra-Family Hybrids: Instead of exactly repeating the periodic entries of the continued fraction, a possible
tweak is to borrow one or more periods from the parameters of other members in the same family of patterns.
The borrowed periods bring features from their source patterns, as illustrated in Figure 5. Another way to
look at this tweak is that we modify the value of x at certain periods. Seen this way, we find that the value of x
at different periods control the density of levels. It is subtle, however, to notice that the level whose density
is affected is not the level associated with the modified period (in terms of truncation discussed above), but
the lower level.

Inter-Family Hybrids: Crossbreeding the s1 and s2 families is also possible. It took some experimentation
to find out how to switch between the continued fraction forms (17) and (18). For an AA Pattern to start like
s1 patterns, and then switch to look like s2 patterns at higher levels, the parameter should have the form

α = [1; 1, {2x, 1}, 2x+1, {2x+2}] x = 1, 2, 3, · · · , (19)

and for a pattern to start like s2 patterns, and then switch to look like s1 patterns at higher levels, the parameter
should have the form

α = [1; 1, 2x+1, {2x+2}, 2x+1, 1, {2x, 1}] x = 1, 2, 3, · · · .
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(a) (b) (c)

Figure 5 : (a) AA([1; 1, 4, 1, 2, 1, 2, 1]), (b)AA([1; 1, 2, 1, 4, 1, 2, 1]), and (c)
AA([1; 1, 2, 1, 2, 1, 4, 1]), showing the effect of replacing the first, second, or third period,
of (truncated) AA(

√
3) with the corresponding periods from AA(

√
8− 1). Compare with the

original patterns in Figure 1(a, c).

(a) (b)

Figure 6 : (a) AA([1; 1, 2, 1, 3, 4]) looks like s1 patterns (short arms) at level 2, and like s2
patterns (long arms) at level 3. In contrast, (b) A([1; 1, 3, 4, 3, 1]) looks like s2 at level 2, then
switches to look like s1 at level 3. Level 1 has the same look in s1 and s2 patterns.

(a) (b)

Figure 7 : Example dual-parameters patterns: (a) AA([1; 1, 2, 1, 2, 1, 2, 1], [1; 1, 4, 1, 2, 1, 2, 1]),
and (b) AA([1; 1, 2, 1, 2, 1, 2, 1], [1; 1, 3, 4, 4]).
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Figure 6 illustrates these tweaks. It is possible to switch back and force between the two families as many
times as wished.

Dual-Parameters Patterns: There is a completely different approach to crossbreeding in AA Patterns: to
use different values of α in the two entries of (1). Not all AA Patterns can mix this way, but at least
all members of s1 and s2 families (and their truncated, intra-family, and inter-family derivatives) can mix
smoothly. The resulting patterns reflect one of the mixed patterns in one direction, and the other parent
pattern in the orthogonal direction. Dual-parameters patterns can be designated as AA(α1,α2). Figure 7
shows some examples.

5 Conclusion

We have seen that the AA Patterns are controllable in many ways by manipulating the continued fraction
of α . Only two forms of continued fractions were investigated, and we have found that it is possible to tweak
these forms as needed. Other forms of continued fractions should be the subject of future research.

What we have discussed could be approached differently as a way to predict AA Patterns. Indeed, if the
continued fraction of α could be parsed successfully into the form:

[1, 1, {{2x, 1} , 2x+1, {2x+2} , 2x+1, 1}] ,

or in the continued fraction form:

2−1/((2x0 +2)±1/((2x1 +2)±1/((2x2 +2)±1/ · · ·))) ,

then it is possible for a person, or even a computer, to tell how the resulting pattern would look. This suggests
a role for AA Patterns in visualization.

It is worth noting that AA Patterns are closely related to Voronoi patterns discovered accidentally by
Kaplan [4], since both types involve quantization artifacts. Many differences make research on AA Patterns
easier than Voronoi patterns. After all, the logic of AA Patterns is completely contained inside the generating
algorithm, and the algorithm is simple and linear. The argument remains, however, that such accidentally
discovered algorithmic arts are worth the research.

Moreover, Kaplan resorted to frequency domain in his analysis, whereas all the analysis of AA Patterns,
herein or in [2], used elementary algebra. Thus, there is a potential of making new findings, either in
AA Patterns or in Voronoi patterns, by exchanging the analysis approaches. Experimenting with either types
of patterns remains a good starting point for making new findings like the ones discussed here, and for that
reason the reader is encouraged to experiment with the Java applet the author has made available online [1].
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