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Abstract 
 

This paper is a reference for a hands-on workshop where participants will make polyhedra out of balloons, and learn how to use 

balloons to demonstrate mathematical principals, from preschool (counting, shape recognition) to college level (graph theory, 

theoretical computer science). Balloons are a great medium for teaching hands-on mathematics, whether to young students, who 

are more open to the idea that an octahedron (for example) is a beautiful object if it is made out of a balloon, to adults, who can 

find an interesting challenge in constructing complicated models. Balloons are also inexpensive, easy to obtain, and easy to work 

with (once you learn the basics, which will be covered in the workshop), which combined with their hands-on nature and visual 

appeal make them a great medium for teaching and learning mathematics. 

 

Introduction 

 
Balloon twisting has taken off relatively recently as an art form, and their use in polyhedral models is 

more recent still. Some instructions and examples of polyhedral models exist [1–5], and balloon models 

have been used for teaching molecular structures [6], but little has been written on how to use them to 

teach mathematics. This paper serves as a reference for skills learned in the workshop, including teaching 

young children to think geometrically as you make them balloon models, classroom activities that help 

students to understand graphs and explore some basic graph theory, and some examples of more difficult 

models and questions which provide a challenge even for experienced mathematicians. 

 

The Balloon Octahedron is the Balloon Dog of Polyhedra 
 

 
 

Figure 1: How to make an octahedron out of one balloon. 
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 The octahedron is simple and, with practice, very fast to make. It is a great first model to learn, and 

once you learn the basics with the octahedron, it is easy to make more complicated models.  

 

Practical tips. There are two standard sizes of long balloons, 160s (1″ × 60″) and 260s (2″ × 60″), both of 

which work to make the octahedron, though I prefer the skinnier 160s for this model. The more twists you 

make in a balloon, the more deflated tail you need to leave at the end for the air to expand into. With 

experience, one gets a feel for how much to leave for any given model. A section of balloon won’t stay 

twisted unless it is twisted to another section or bent at an angle, so during step one in the above 

instructions, bunch up the sections back and forth in your hand as you twist them off, until you’re ready to 

complete the square. I recommend using normal solid color balloons, not metallic or pearl colors, because 

metallic colors often aren’t as stretchy and pop loudly enough to cause ear damage. 

 

The magic balloon octahedron wand. The biggest difficulty is getting the edge lengths to be equal, 

which takes practice! This can be circumvented by twisting off small sections and then leaving a tail, 

which can act as the handle of a magic balloon octahedron wand (this requires 160s). This model is fast to 

make, so it is perfect for handing out at math and science-related events.  

 

Knowledge is power. At any event with young children, they will automatically line up to have a magic 

octahedron wand made for them as soon as they see that you’re giving them out. Once you have a captive 

audience, take advantage and teach them something about the octahedron as they watch you make it!  

 

 
 

Figure 2: Making a balloon octahedron wand, watched by a girl who just received one. 

 

If a child is very young, have them count the edges with you as you twist them off. Once they reach 

school age, here are some questions you can use to make them think geometrically: 

 

• How many sides does an octahedron have? By asking a child how many sides are on an octagon 

and how many legs an octopus has, they might discover that they can make a good guess. Show 

them the triangular openings as they appear on the balloon model. Does what you see match your 

guess? 
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• Even though the octahedron is covered in triangles, it has square cross sections. Show how the 

edges of the octahedron can be seen as three squares put together. If all the edges can be made by 

putting together three squares, how many edges does the octahedron have? 

 

• If the octahedron is made from eight triangles with an edge on each side, and eight times three is 

24, why does it have 12 edges, not 24?  

 

• Can you use this same concept to correctly compute the number of vertices? Does this number 

match up with what you see on the model? 

 

Don’t forget to warn them to use their magic octahedron wisely, because knowledge is power! 

 

Classroom Activities 
 
Exploring geometry. Models such as the octahedron described in the first section can be used to explore 

geometry in a hands-on way. The Platonic solids are a good place to start. The simplest platonic solid, 

meaning the one with the least number of sides, is the tetrahedron. If you wanted to only traverse each 

edge once, it cannot be made out of only one balloon! Figure 3 shows how to construct it using two. 

 

 
 

Figure 3: How to make a balloon tetrahedron. 

 

 Have students work out methods for building the other Platonic solids with as few balloons as 

possible. Using a solid model or picture as reference, can they figure out how many edges it has and how 

many balloons it would take? Into how many sections must they twist each balloon?  

 

 
 

Figure 4: Different methods for making a balloon cube. 
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 A fun puzzle is to design symmetric and aesthetically pleasing ways to link up the balloons. 

Challenge students to find different ways of putting together polyhedra. For example, the pieces of the 

cube can be linked up two distinct ways, as shown in figure 4, but one of those ways is chiral, so you can 

imagine putting it together so that either S or Z shapes are shown on the outside. The the two-balloon 

tetrahedron is also a chiral arrangement. Have students prove that there is no other way to make it. Figure 

5 shows just one way of constructing the dodecahedron and icosahedron. Can students find other ways? 

Other symmetric ways? 

 

 
 

 

 
 

Figure 5: One way to make a balloon dodecahedron and icosahedron. 
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 The same units that are used to make the icosahedron in Figure 5 can also be used to make any snub 

polyhedron. Each student can make one module, using an inflated balloon as a guide to make sure all 

students inflate their balloons to the same length. Then they can then work as a group to create larger 

polyhedra, such as the snub cube and snub dodecahedron in Figure 6. 

 

    
 

Figure 6: How to combine 12 identical units into a snub cube, or 30 into a snub dodecahedron. 

 

 There are an infinite number of polyhedra that are theoretically possible to make out of one balloon, 

including all dipyramids and antiprisms, though there are practical limitations. The octahedron is both a 

(square) dipyramid and a (triangular) antiprism. The triangular dipyramid is a bit simpler to make, as seen 

in Figure 7. 

 

 
 

Figure 7: Triangular dipyramid, out of one balloon. 
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An introduction to graphs. A balloon sculpture can be thought of as a graph, as seen in Figure 8. Have 

students figure out how to draw the graph of a 3D model. In what different ways can you draw it? 

 

 
 

 

Figure 8: A balloon dog and its graph. 

 

 Instruct students to try making different balloon models from the same graph. Changing the lengths 

of edges and how the form is embedded in 3D can help students understand the essence of what a graph 

is, and how objects that look very different from one another can have the same structure. The balloon 

dog above would have the same graph if the body were long like a dachshund, or if its legs were different 

sizes, or sticking out opposite sides, or even if they were large loops and linked with each other. 

 

 Have students draw their own graph, and then figure out how to make it with balloons. How many 

balloons do they need? Can they figure out a rule that will let them know the minimum number of 

balloons required to make a given graph? Through experimentation, they may discover that they need to 

put the end of a balloon at any vertex where an odd number of edges meet. Because each balloon has 

exactly two ends, the minimum requirement for number of balloons equals the total number of vertices 

with odd degree, divided by two. 

 

 What kind of graphs can you make from just one balloon? This leads to the concept of Eulerian paths 

and cycles. This topic, as well as more difficult questions of balloon graph decomposition, are explored in 

[7]. 

 

Advanced Models 

 
 This section exists to give you a quick taste of what else is possible in the realm of mathematical 

balloon twisting. There are an infinite number of polyhedra, providing an infinite number of challenges, 

but beyond polyhedra there is a whole world of polytopes—the analogue of polyhedra but in different 

dimensions—and other mathematical figures are possible as well, such as crystal lattices, regular 

polylinks, and knots. 

 

 The 4-simplex is the four-dimensional analog of the tetrahedron, and is lovely when made out of a 

single balloon. This model is difficult because it uses two different edge lengths—six long edges make up 

the outer tetrahedron and four short edges meet at a central vertex. 
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Figure 9: 4-simplex, out of one balloon. 

 

 Regular polylinks, also known as “orderly tangles,” are a great challenge to weave together. Figure 

10 shows how to weave together six squares into a tangle.  

 

 
 

Figure 10: How to weave the tangle of six squares. 
 

 Figure 11 shows the finished tangle of six squares, simple Borromean rings made from three 

rectangles, a tangle of three triangles, and a tangle of five pentagons. 

 

 When making tangles, the ratio of length to width must be correct to get a snug fit. It is better to have 

balloons that are too long and thin to fit snugly, and then you can grab each corner and twist off a bit to 

create the right length edge, as seen in three of the models in Figure 11. Depending on the model, you 

may have to use 160s, such as with the tangle of five pentagons. 260s work well for the other three. 

Figuring out the exact length/width ratio for a perfect fit is another interesting question, explored in [8]. 

 

There are many more possible tangles! A good reference is [9]. More general material can be found on 

my mathematical balloon twisting webpage: http://vihart.com/balloons 
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Figure 11: Tangles: three rectangles, six squares, four triangles, and five pentagons. 
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