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Abstract 
 

We can have several procedures to construct 3-dimensional models of the more-dimensional cubes and 2-dimen-
sional shadows of these, even on the classical field of Platonic and Archimedean solids. The polar zonohedron 
models of the more-dimensional cubes can be produced either as ray-groups based on symmetrical arranged starting 
edges or as sequences of bar-chains joining helices. The suitable combinations of the models can result in spatial 
tessellations. The shadows of the models and the sections of the mosaics allow unlimited possibilities to produce 
planar tessellations. The moved sectional planes result in series of tiling or grid-patterns transforming into each 
other. Working with these methods and in search for general algorithms, we may see, even from different 
approaches that the 6-dimensional cube’s models and their projections have more regular and more special features 
than those of other more-dimensional cubes and have several possibilities of application in different branches of art 
and design. 

 
 

Polar Zonohedron Models of the k-cubes 
 

We can find several procedures to construct 3-dimensional models (3-model) of the more-dimensional 
cubes (k-cubes) and 2-dimensional shadows of these. The next method of the modeling of k-cubes origins 
from a 3-dimensional reconstruction of the well known, regular octagon shaped shadow (Petrie polygon 
[12]) of the 4-cube [5]. Due to this result, the planar shadow of the 6-cube’s 3-model can be a regular 
dodecagon too. Figure 1 shows the reconstructed model (with and without faces) in top and elevation 
views. 
 
According to the next way to construct a 3-model of k-cubes, the shadow of the model can be a k-sided 
polygon in case of even k, but it remains a 2k-sided polygon if k is an odd number. Lifting the vertices of 
a k-sided regular polygon from their plane, perpendicularly by the same height, and joining with the 
center of the polygon, we get the k edges of the k-dimensional cube (k-cube) modeled in three-
dimensional space (3-model). From these the 3-models or their polyhedral surface (Figure 2: top, 
elevation and axonometric views) can be generated by the well known procedure of moving the lower-
dimensional elements along edges parallel with the direction of the next dimension [5, 11, 13]. Thus each 
polyhedron will become a polar zonohedron, more generally a zonotope [4], i.e. a „translational sum” 
(Minkowski-sum) of some segments [5, 13]. This structure keeps the normal cube’s central symmetry and 
rotational symmetry too. The latter is related to the diagonal joining the starting vertex referred to the 
groups of any j<k dimensioned elements. This diagonal is further on called as a main diagonal. 
 
We can construct such a model of the 6-cube based on the edges of two normal cubes too. These have a 
common diagonal and are rotated in 60° to each other. It will be later more observable that the top view 
and the arrangement of the vertices in our model are similar to those of normal cubes fitted to each other 
by their faces. 
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Figure 1 Figure 2

 

 

 

 
Figure 4-6  

                                          Figure 7                                                   Figure 8-9 
 
 

The “Golden Model” of the Six-dimensional Cube 
 

Our first k-cube model, discovered the following way, was a more special 3-model of the 6-cube [5] as 
the above one: the common part of 5 cubes, constructed in the dodecahedron – Dh –, is a rhombic 
triacontahedron – RT –. If we draw parallels with every different-angled edge in each vertex of this body, 
we will get this model with all inner and outer edges, a 192 altogether (Fig. 5-7). The RT can be 
constructed by connecting the vertices of the dual pair of the dodecahedron and the icosahedron if their 
edges half each other (Fig. 4). The two similar RT are in proportion of the golden mean –t– (Fig. 6). The 
RT-hull is defined by 32 out of the model’s 26 = 64 vertices. 12 out of the inner 32 vertices are joining a 
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Platonic icosahedron – Ii – the remaining 20 are joining a Platonic dodecahedron – Di – (Figures 7-9). 
The outer vertices could be arranged also on a regular icosahedron – Io – and dodecahedron – Do – (like 
it happened in Figure 4). The edges of these polyhedra half each other. We label the 5 congruent cubes by 
C severally. We can discover the golden mean concerning the edges of the next polyhedra: 
 

Dh / C = Do / Io = Di / Do = Ii / Do = t. 
 
The diagonal-pairs of the 30 congruent faces of this 3-model of the 6-cube are in proportion of the golden 
mean. The model is rotationally symmetric of the so called main diagonal which is perpendicular to the 
plane of view in Figure 8. This view has the form of a regular decagon, and holds a multitude of elements 
which are in proportion to each other of the golden mean. The perimeter of the model’s shadow can be a 
regular hexagon too (Figure 9). The smaller and longer shadows of the edges are in proportion t in this 
projection. We could probably find even more elements on the model and its shadows being in this 
proportion. 
 
 

Models and Tessellations Joining Helices 
 

Regarding the former model described in the first chapter, it is also possible to get to the endpoint of the 
main diagonal from the starting point along easily recognizable bar-chains, whose binding points (the 
outer vertices of the model) join on one helix each. The common lead of these helices is the main 
diagonal. The procedure to construct the whole 3-model of k-cubes is described in [7] taking a single 
helix as point of departure. 
 
Each vertex of the 6-cube’s 3-model can join on helices arranged the following way as well. Take a 
rotational cylinder! Shift it’s copy so that it’s generant coincides with the original’s axis, around which 6 
more polar  distributed copies  are  created!  Repeat  this  around all  axes!  Start  a  helix from a point  of  the 
common generants on the cylinder’s surface, and mirror it to the plane defined by the generant and the 
axis! Distribute the helix pair around the axis six-fold! This procedure can be repeated infinitely, but the 
arrangement could be generated as an array of the elements too (Fig. 10 left: axonometric and top views). 
The vertices of the above model of the 6-cube (Fig. 2) can be joined onto the spatial distributed helices’ 
intersection  points.  This  very  regular  structure  can  also  have  architectural  applications,  for  instance  as  
spatial lattice girders. 
 

 
Figure 10 

 
Figure 11 
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Combining 2<j<k edges, we can build 3-models of j-cubes, as parts of the k-cube [6]. The periodic tessel-
lations usually investigated by us always hold the 3-model of the k-cube and necessary j-cubes originated 
from this. The structure of the probably densest tessellation built from the 3-model of the 6-cube and 
necessary derivative j-cubes shows Figure 11 (top, elevation, axonometric views). The k-models can be 
composed from the derivative j-models, thus the vertices of these join ones of the k-model [6]. This 
means that the vertices of the space-filling mosaic, based on the above described 3-model of the 6-cube or 
only on its j-cubes, join the formerly distributed helices (Fig. 10 right: axonometric and top views). 
 
 

Further Tessellations Based on 3-models of the 6-cube 
 

The above arrangement of the tessellation can be used too if we gain the 6-cube’s 3-model so that we 
omit edges of the 3-model of a more than 6-dimensional cube. The model of the 6-cube and derivative  
2<j<6-cubes will be constructed from the remaining 6 edges. Figure 12 shows this method for example 
based on the model of the 12-cube. (You can follow the figure from bottom left counter-clockwise up to 
the appearing of the repeated base elements.) The method is also applicable to create a space-filling 
mosaic based on the modified 3-model of the 5-cube originated from the 3-model of the 6-cube [9]. 
 

 
Figure 12 

 
Figure 13 

 

 
Figure 14 

 
It can be said that we could construct a periodic tessellation which holds our regular 3-model of the  
6-cube and all of its derivative j-cubes’. It is of course possible to create space-filling mosaics with other 
sets of these elements if we omit more or less from these. In Figure 14, we can see five of the 15 different 
main sections of a mosaic from which only one of the derivative 3-cubes’ models is missing. The planes 
of the main sections are perpendicular to the main diagonals of the applied 6-cube models and hold the 
vertices of the space-filling bodies. Generally, all parallel intersecting planes hold the layers of the spatial 
mosaics, thus we can reconstruct the tessellations on the base of such figures if the planes are placed in 
the appropriate density. 
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Through Fig. 13 we can demonstrate as well, that a periodic tessellation can be constructed also from the 
RT-model of the 6-cube and its derivative j-cubes. (Fig. 13 can be followed like Fig. 12.) This building 
block set holds the elements of the 5-cube’s 3-model and their pair with the additional edge parallel to the 
main diagonal. Two from these are constructed from the different shaped faces of the 5-cube’s model. 
 
Former proves show that by parallel sliding of edges in case of three Archimedean solids we obtain 
special 3-dimensional models of the 6-, 9- and 15-dimensional cubes inside these solids. This model of 
the 6-cube hulled by the truncated octahedron has also a special attribute because it can fill the space by 
itself. The structure of some spatial lattice girders is based on the former properties. 
 
 

Planar Tessellations, Art and Design 
 

The possible connections between the zonotope models of the k-cubes and different branches of art are 
analyzed more generally by the author in [7]. The 2-dimensional shadows of the models and the sections 
of the above described mosaics allow unlimited possibilities to produce plane-tiling which can be the base 
of several works of art and can help industrial designs. The moved intersecting plane(s) result(s) in series 
of tessellations or grid-patterns transforming into each other [8]. This can be shown through various 
animations as well, with the possibility of use in exhibition, publicity and so on. 
 

 
Figure 14 

 
Figure 15 

 
The parallel planar projections of the 3-models of the k-cubes and their j-cubes and faces generate sets of 
plane-tiling elements. We have described above the 3-models of the 6-cube which can have hexagonal 
and dodecagonal views respectively. The last one can generate for example the well to use tiling set 
showed  in  Figure  14.  It  is  advisable  to  create  a  symmetric  unit  tiling  pattern  using  the  shadows  of  the  
derivative more-dimensional elements. We can make the constructed tessellation more complex easily if 
we replace the tiling elements by the shadows of their lower dimensional components (Figure 15). Thus 
we can grow the number of the applied planar symmetry groups. 
 
Regarding the space-filling mosaics based on the rotationally symmetric 3-model of the 6-cube, we can 
compare the sections perpendicular to the main diagonal and the shadows projected parallel to this 
diagonal with those of the tessellation of normal cubes. These patterns or their combinations can cover 
each other. Several “op art” works of Victor Vasarely are based on the isometric views of the tessellation 
of cubes. Some of his pictures and sculptures could give the idea to create similar works of art according 
to the above polar zonohedron model of the 6-cube. 
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Remarks 
 

This  paper  describes  some  specialties  of  a  wide  topic  which  naturally  could  not  be  detailed  due  to  the  
necessary limit of size. Thus the most references listed below have internet accesses and can help in 
studying the foreground by related references as well. We try to discuss this topic among frames of the 
constructive geometry. It would require colored figures. You can reach more detailed text and adequate 
figures via http://icai.voros.pmmf.hu. The creation of the constructions and figures was aided by the 
AutoCAD program and Autolisp routines developed by the author. 
 
 

Acknowledgements 
 

The author is grateful to the (anonymous) referees for the valuable comments especially for the suggested 
references belonging to the foregrounds of this topic. 
 
 

References 
 

[1] H. S. M. Coxeter, Regular Polytopes (3rd ed.) Dover, 1973 
[2] A. Hanegraaf, Twenty Questions on Zonogons, Zonohedra and Zonoids 
http://209.85.135.132/search?q=cache:http://upcommons.upc.edu/revistes/bitstream/2099/847/1/st4-08-
a4.pdf 
[3] C. H. Séquin, 3D Visualization Models of the Regular Polytopes in Four and Higher Dimensions, 
BRIDGES Conf. Proc., Baltimore, pp 37-48, Jul.27-29, 2002. 
[4] R. Towle, Zonotopes  
http://zonotopia.blogspot.com/2008/04/symmetrical-structures.html 
[5] L.Vörös, Reguläre Körper und mehrdimensionale Würfel, KoG Scientific-Professional Journal of 
Croatian Society for Constructive Geometry and Computer Graphics, no.9, Zagreb pp. 21-27. 2005. 
http://master.grad.hr/hdgg/kog/ 
[6] L. Vörös, Two- and Three-dimensional Tiling Based on a Model of the Six-dimensional cube, KoG 
Scientific-Professional Journal of Croatian Society for Constructive Geometry and Computer Graphics, 
no. 10, Zagreb, pp. 19-25. 2006. 
http://master.grad.hr/hdgg/kog/ 
[7] L. Vörös, N-Zonotopes and their Images: from Hypercube to Art in Geometry, Proceedings: Library 
of Congress Cataloguing-in-Publication Data : Weiss, Gunter (editor on chief) and International Society 
for Geometry and Graphics ISGG = Proceedings of the 13th International Conference on Geometry and 
Graphics Dresden, August 4-8, 2008 ISBN 978-3-86780-042-6 electronic book / International Society for 
Geometry  and  Graphics  ISGG  (ed.)  -  Gunter  Weiss  (ed.).  -  Dresden:  ERZSCHLAG  GbR,  Aue,  2008.  
http://icai.voros.pmmf.hu 
[8] L. Vörös, Space-filling Mosaics and (Animated) Plane-tiling Patterns, Symmetry: Culture and 
Science, Volume 20, Nos. 1-4, pp. 297-308. 2009.   http://icai.voros.pmmf.hu 
[9] L. Vörös, News on the Space-filling Zonotopes, 14th Scientific-Professional Colloquium on Geometry 
and Graphics, Velika, September 6−10, 2009 
http://www.grad.hr/sgorjanc/velika/abstracts-velika.pdf p. 4. 2009. 
[10] E. W. Weisstein, Hypercube, From MathWorld- A Wolfram Web Resource -
http://mathworld.wolfram.com/Hypercube.html 
[11] E. W. Weisstein, Hypercube Graph, From MathWorld- A Wolfram Web Resource -
http://mathworld.wolfram.com/HypercubeGraph.html 
[12] http://en.wikipedia.org/wiki/Petrie_polygon#The_hypercube_and_orthoplex_families 
[13] http://en.wikipedia.org/wiki/Hypercube 

Vörös

358

http://icai.voros.pmmf.hu/
http://209.85.135.132/search?q=cache:http://upcommons.upc.edu/revistes/bitstream/2099/847/1/st4-08-a4.pdf
http://209.85.135.132/search?q=cache:http://upcommons.upc.edu/revistes/bitstream/2099/847/1/st4-08-a4.pdf
http://zonotopia.blogspot.com/2008/04/symmetrical-structures.html
http://master.grad.hr/hdgg/kog/
http://master.grad.hr/hdgg/kog/
http://icai.voros.pmmf.hu/
http://icai.voros.pmmf.hu/
http://www.grad.hr/sgorjanc/velika/abstracts-velika.pdf%20p.%204.%202009
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Hypercube.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/HypercubeGraph.html
http://en.wikipedia.org/wiki/Petrie_polygon#The_hypercube_and_orthoplex_families
http://en.wikipedia.org/wiki/Hypercube

