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Abstract 
 

Simon Stevin (1558/59–1620) was a mathematician, physicist and engineer with an extremely wide spectrum of 
interest. His music treatise titled Vande spiegeling der Singconst was written in ca. 1600 but remained unpublished 
until the end of the19th century. This was the first European writing which defined the equal temperament with 
mathematical exactness, involving the ratio 12√2 for half-tones and chromatic steps. This paper tries to show parallels 
between his music theory and his general way of thinking. It describes the highly contradictory and changing practical 
requirements and demands a theory of tone systems and temperaments had to meet; and it explains how Stevin, 
sacrificing much of the practical needs of the musician of his day for the simplicity of theoretical construction, 
discovered ingeniously equal temperament which was justified and generally accepted only two centuries later, with the 
development of musical style. 

 
 

Life and Work 

Simon Stevin (Bruges, 1548 or 1549–The Hague or Leiden, 1620) was one of the most versatile 
brains of his day. He wrote 11 books on various topics as book-keeping, interest tables, 
mathematics (including trigonometry, geometry, number theory, arithmetics and algebra), 
mechanics, astronomy, architecture, geography, navigation, military technique and politics. 

His major contribution to mathematical thinking was that he accepted all real numbers, 
including irrational and negative numbers as equivalent, as numbers “of equal rigts”. This 
philosophy must have been connected with his re-invention of the decimals, introduced much 
earlier by Chinese and Arab mathematicians but in Europe propagated widely and rapidly by his 
booklet De Thiende, (‘The tenth’). Among his other major accomplishments there is a method for 
finding approximate solutions to algebraic equations of all degrees; he experimented with 
dropping lead weights of various size to see if they fall at the same speed before Galilei; his 
theorem of the triangle of forces gave an impetus to statics; he formulated the principle of virtual 
translations correctly; and he recognized the hydrostatic paradox. 

 

The Birth of Equal Temperament 

 It would have been surprising if a man of such a wide interest and originality of thinking 
had not been trying to meet the challenge of finding new correspondences between musical 
phenomena and quantities, a task which excited many theorists since the antiquity. He actually 
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did it; and with a fascinating result. But he never published, or indeed probably never finished his 
manuscript about music theory entitled Vande spiegheling der singconst (approximately: ‘on the 
theory of music’). Nevertheless, his views did not go unnoticed. We know a letter, sent to Stevin 
by a Dutch organist who denies or refines some views of his; whereas his younger contemporary 
Isaac Beeckman, and theorists like Mersenne and Descartes rejected his views. 

 It is clear from his texts is that he had read some of the works of the most important 
music theorists of the 16th century like Glareanus, Zarlino, and Vincenzo Galilei. His writing 
comprises the main text titled “On the Theory of Music”, which, however, only discusses the 
question of pitches, scales and ratios in various approaches, skipping e. g. musical notation, the 
aspect of note values and time, counterpoint etc. etc.; and an apparently fragmentary “Appendix” 
whose scope should have been considerably wider, according to its planned content. The main 
text begins, as it seems to be appropriate to a mathematician, with a series of definitions. 
However, he does not start from the discussion of various musical intervals as it was customary 
then but from the concept of the major scale, based on the concept of the step (“trap” in Dutch), 
existing in a minor and a major variety (“cleentrap” and “groote trap”). 

1st Definition 

Step is the next subsequent ascent which one rises in natural singing, of 
which the smaller variety is called minor step, the larger, major step. 

2nd Definition 

Natural singing is that which by an orderly ascent takes place as follows: two 
major steps, one minor, three major steps, one minor, two major steps, one 
minor, three major steps, one minor, and soon gradually, in orderly sequence. 

Octave is the only interval other than a second which he characterizes in itself and not only as a 
relation (“verlycking”) made up of steps or whole and half tones. It is actually defined as “seven 
steps” (or six whole notes) in the first place; but he remarks that the upper note is “very similar” 
to the lower one, and he admits that it corresponds to the 2:1 ratio of string lengths. (Stevin never 
talks about vibrations and their frequency but he regards the length of string connected to any 
given pitch, reciprocal with the frequency, a basic attribute of the given note.) This is not quite 
logical as he rejects any other suggestions for simple proportions in the case of other intervals. 
Those are simply put together from steps or whole and half notes: there exist no “empirical” fifths 
or thirds, just “speculative” ones. However, one chain is definitely missing: we get no explanation 
whatsoever, why the “steps” are just as big as they are. This is the natural way (“natuerlicke 
sang”) and that’s it. Moreover, there exists no distinction between a minor second and a 
chromatic step (e. g. C to C sharp) whose musical functions are entirely different. 

 Stevin’s strategy is that of eliminating any complication from the way of his (second) 
postulate declaring that all whole tones respectively all semitones are equal to each other. In fact, 
it doesn’t follow from this that whole tones are exactly twice as big as half-tones are but he 
actually means that, because in the subsequent explanation he writes down the magic number of 
12√2, or rather its reciprocal as he is calculating with string lengths rather than frequencies. He 
also enlists his speculative frequency proportions up tone octave as the various powers of 12√2. 
The complicated system of practically existing intervals becomes as simple and homogeneous as 
the now privilegeless “society” of real numbers. Equal temperament has been born. 
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Contradictions 

 There are essential contradictions built into the Western tone systems, let them be 
pentatonic, diatonic or chromatic ones. But in order to understand these, first we have to put 
Stevin’s approach from head to feet. In reality, it is not the fifth which is derived from the second 
(i. e. is put together from major and minor ones) but quite the other way round: the size of the 
seconds is derived from the fifth. In fact, the size and order of the steps in the above-mentioned 
scales is decided so that the highest possible number of fifths and fourths occurs between the 
notes of the scale (with very good approximation). Fifths and fourths (characterized by the 
proportions of 3:2 respectively 4:3) are physically and physiologically distinguished by the 
second and third simplest joint structure of harmonics (after the octave), due to the many 
coincidences in their systems of harmonics. These intervals–especially the fifth, of which the 
fourth is the inversion, complementing it to an octave–sound very clearly and radiantly and, being 
so characteristic, they are relatively easy to sing in tune both synchronically and melodically. 
While it would be of course hopeless to prove historically, with mathematical certainty, that fifths 
are “primary” and seconds are derivable from them, it is an especially convincing fact that all 
three basic scales mentioned before, the pentatonic (“the black keys on the piano”), the diatonic 
(“the white keys on the piano”) and the chromatic (all keys of the piano) can be originated from a 
series of four, six and eleven consecutive fifths (i. e. five, seven and twelve consecutive notes) 
projected, via octave transpositions, into the same octave (e. g. into the “middle octave”, from C1 
to C2). Or to put it quite correctly: their basic shapes can be originated in this way, the values of 
the seconds (and of the fifths) in practice never differ too much from the values obtained in this 
way. But there are serious problems and contradictions in the details, and, as it normally happens, 
there exists no perfect compromise. 

 First of all, fifths and octaves, in the strict sense, are incommensurable. The unpleasant 
fact that twelve consecutive fifths make somewhat more than seven octaves, was already known 
to Pythagoras; the difference, slightly less than one quarter of a minor second, is called a 
Pythagorean comma. This doesn’t cause much of a problem until the music you play doesn’t 
employ more than eight or nine notes of the twelve-tone set (e. g. the “white keys”, B flat and F 
sharp), which was the case until ca. the 14th century. Or until you build a keyboard instrument 
with twelve keys. Because if you do, and therefore you want a closed sequence of fifths instead of 
an infinite one, you are forced to manipulate with the exact size of the fifths. 

 But there is a contradiction worse than the one between the octave and the fifth. 
However, this one only manifested itself after harmony based on triads became a decisive 
element in European music. This problem did not exist at all until ca. 1000 a. D. while the music 
of the Mediterranean was basically monophonic; and during the first centuries of European 
polyphony when the third played a subordinate role and was treated rather as a dissonance than a 
consonance. But by Stevin’s time the sweetness of the major third and the major triad saturated 
European polyphony (both sacred and secular), a tendency which owes a lot to England and 
which was called on the continent “contenance anglois”. 

 The major third, similarly to the fifth, is strongly audible among the harmonics of any 
musical sound. (The harmonics are formed together with the basic note on any stringed ore wind 
instruments; their frequencies being the multiples of the basic tone.) Therefore it is an essential 
requirement in polyphonic music to play or sing “true” major thirds (and fifths). The reason is 
simple: if f is the frequency of a bass note and there is a major third of it, say two octaves higher 
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in the violin or oboe or in the right hand of the keyboard instrument, then it will be clashing with 
the existing 5th overtone, having the frequency 5f, of the bass note, unless the third is an exact 
major third of the ratio 5:4. This clashing causes a beat and the whole cloud of overtones of the 
chord becomes messy and loses its periodicity. (Because of interferences actually several beats of 
different speed will be generated.) The sound loses its shine and becomes blurred. What has to be 
made unmistakably clear is that this is an objective, practical physical and physiological fact, 
having nothing to do with any speculative play with simple integers. 

 

Meeting the Challenge: the Art of Compromise 

 Now the main problem of tuning and temperament during the centuries was that if you 
generate a diatonic or chromatic scale, as described above, from consecutive fifths, then either 
using true fifths (3:2; “Pythagorean tuning”) or slightly “narrower” fifths, diminished by 1/12 of 
the Pythagorean comma, thus making it possible that the circle closes and we get a twelve-tone 
scale (“equal temperament”, suggested by Stevin and used generally for tuning pianos today), the 
major thirds will be way too wide, and audibly out of tune. The difference between the 
Pythagorean third (four consecutive fifths minus two octaves, 81/64) and the true major third (3/2 
= 80/64) is a tiny interval with the ratio 81/80 and is called the syntonic comma. This is 
somewhat smaller than the Pythagorean comma, just a little bit wider than one fifth of the half-
tone. In the case of equal temperament, the problem is almost as serious. As the fifths in this 
temperament are by ca. one-fiftieth of the half-tone narrower that true fifths, the major thirds in 
equal temperament (i. e. also on today’s pianos) are by ca. 1/7 of the half-tone too wide. 

 While this problem has been recognized in Antique times, it was, as pointed out before, 
rather a speculative theoretical problem those times. However, a millennium and a half later this 
became the central and most chronic problem of intonation, as far as instruments with fixed 
tuning are concerned. For singers and for players of all unfretted stringed and plucked 
instruments (those instruments, like the violin, where the player can put his fingers on the 
fingerboard anywhere he likes) and of wind instruments, where the regulation of the “fine tuning” 
is possible, this was a non-issue as they are always re to follow their ears and produce any thirds 
or fifths or octaves in tune. 

 But the problem was unavoidable on keyboard instruments (mostly organs, clavichords 
and harpsichords those days) where you had to fix the pitch of the note belonging to a key for the 
whole piece or a concert or, in the case of organs, for much longer periods. The major thirds 
caused by true fifths were so wide that they were out of question; Pythagorean tuning, if it had 
existed in practice before, played no role in our period. The major thirds of equal temperament 
are almost as bad, and obviously that’s why this option has never been mentioned before Simon 
Stevin, although it’s hard to imagine that they never thought of this possibility. 

 The only thing they could do was to manipulate with fifths of different size. This was 
made possible by the fact that not all 12 notes were equally important or were used with the same 
frequency. In ancient monophony it was common that music pieces only used a scale derived 
from 7 or 8 notes ordered by consecutive fifths. (For 8 notes e. g.: C, D, E, F, G. A, B flat and B 
natural was typical). Such reduced tone sets were used in early polyphony in instrumental music, 
too (apart from early chromatic pieces but they were a curiosity and mostly occurred in vocal 
music). The tone sets used in particular pieces only slowly spread over the entire 12 notes, and 
not before the mid-Baroque era, i. e. after Stevin’s time. What could be done was to use narrower 
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fifths (and thus more acceptable thirds) among the commonly used notes and push the excess to 
the fifths between the unused notes, making them so wide that they were practically useless. 
Sometimes they were squeezing most of the residue into just one fifth, the “remotest” one, which 
was unbearably out of tune and they called it a “wolf fifth” as it was howling like a wolf. 

 A popular method of the 15th and 16th centuries, which led to an excellent result within 
the limited set of notes of the age was the meantone temperament. Most fifths were reduced by 
ca. 1/18 of the half-tone; this is still a quite acceptable fifth, whereas four consecutive ones make 
a perfect major third (plus two octaves). If you tune seven or eight consecutive fifths in this way, 
e. g. B flat–F–C–G–D–A–E–B–F sharp, then all the “important” thirds are in tune and you can 
distribute the excess among the four most “obscure” fifths. 

As you arrive at more and more complicated temperaments, you will need more and more 
flexibility and creativity to accommodate to the requirements of particular keys or pieces. Even in 
the case of meantone temperament, you can decide to “shift” the series of the “good” fifths to the 
flat or to the sharp direction, deciding e. g. if a certain key will be can be used as a perfect E flat 
or a perfect D sharp. We can’t go into further details; but it may have become clear already that 
the more notes you are going to use frequently the more concessions you have to make as to the 
number and perfection of “good” thirds. And the music history was advancing exactly towards 
the “emancipation” of notes and remote keys. 

 

Courage or Ignorance? 

The idea of equal temperament (which was known to Chinese music theorists in the 16th 
century) must not have been a complete novelty for Stevin, too. It had probably been used 
“tacitly” on fretted plucked instruments like the lute well before him. You can also blame him 
with declaring the superiority of equal temperament against the exponents of other views instead 
of than using real arguments; e. g. he simply postulates that, in the case of the fifth, 3:2 is and 
arbitrary approximation of the true value, 12√1/128. 

 It has to be pointed out that Stevin’s resentment against simple ratios is hypocritic as it 
reappears on a different level. The Pythagoreans thought (basically correctly) that the ratios of the 
two string lengths (to us, rather those of the frequencies) belonging to the two notes of an interval 
are simple fractions. However, with Stevin’s equal half-tones, with the whole-tones being exactly 
twice as much, the ratios of the permitted intervals–i. e. the ratios of the logarithms of frequency 
ratios–are simple fractions; e. g. a minor third is 5/3 of the fourth, or a fifth is 7/12 of the octave. 
These two kinds of simplicity are, unfortunately, incompatible. Stevin may have been the first 
one who understood that. But he absolutely does not deal with actual sounds, harmonics or beats; 
and he tries to play down the importance of the Pythagorean contradiction between octave and 
fifth, and conceals the phenomenon of the wolf fifths (in the case of using true fifths elsewhere) 
by simply alleging that the last fifth, the residuum is accidental because we cannot tune the other 
eleven fifth so exactly. (Of course, the inventors and users of many ingenious temperaments were 
even able to distribute the comma as they liked between the fifths, using the method of counting 
the beats which is an extremely precise method of measuring tiny pitch differences.) 

While he is at least refusing the validity of the simple proportion in the case of the fifth, 
there is deep silence about the much more essential contradiction between the requirement of 

Amateur and Pioneer: Simon Stevin (ca. 1548–1620) about Music Theory

315



perfect thirds and equally tolerable fifths. He does not even mention thirds or the existence of 
meantone temperament.  

But still, I think he was an original thinker and he conjectured much of the future. There 
unquestionably existed a Gordian knot: the difficulties of tuning various instruments were 
constantly growing with the gradual conquest of more and more keys and harmonies during 
music history. He seems to have recognized the importance of the problem. It is true: he did not 
bother with undoing the knot, he simply cut it in two. What is most interesting is that his 
suggestion did not match the musical style of his day at all. Disregarding the special case of the 
fretted instruments, the sacrifying of the perfection of the major thirds was still too high a price 
around 1600 to pay for pretty little advantages. However, values were changing. Bach’s well-
tempered clavier was not an equally tempered instrument yet. But it was already playable in all 
keys, even if not in an equally pleasant way. And another century later, for Schubert or Chopin, 
the possibility to play equally well in any key and, and, above all, the freedom to unlimited 
modulation, was already an absolute must. By then, the loss of the perfection of the major thirds 
was already a very reasonable price. The more so, as the overtones of the modern piano are 
slightly irregular from the beginning, this phenomenon tending to conceal minor defects of 
intonation. 

That all happened two centuries after the death of Simon Stevin. As we see, he somehow 
succeeded in foreseeing the needs and requirements of the far future. This is which makes it 
interesting to us to conjure up his figure from the distance of four centuries. 
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