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Abstract
The remarkable hidden symmetry of the Bernoulli lemniscateappeals to the mind and eye alike, and presents an
opportunity to straddle the line between art and mathematics.

1 Introduction

The best known plane curve resembling the symbol for infinity∞ is thelemniscate of Bernoulli. It is named
after James Bernoulli, who considered the integral for the curve’s arclength in his early work on elasticity
theory (1694). The same arclength integral led to discoveries by Count Fagnano (1718) and Euler (1751)
on the addition theorem for elliptic integrals, the key which opened up the theory of elliptic integrals and
functions. Following Gauss’s theorem (1796) on constructible polygons, Abel’s result (1827) on subdivision
of the lemniscate gave the curve a place in the history of algebra and number theory. (See [3], [5] and [6].)

It is surprising that a curve with such a history is not betterknown as a beautiful geometric object in
its own right. The obvious elegance, symmetry, and association with infinity bestow on the lemniscate an
undeniable mystique. In fact, hidden within itself, the curve carries a much richer structure. As explained in
the last section, it is hardly a stretch to say that the lemniscate is intrinsically adisdyakis dodecahedron—dual
to the great rhombicuboctahedron—with 48 triangular faces, 72 edges, and 26 vertices, which are permuted
by the full octahedral group of symmetries. After providingbrief mathematical and historical background,
we offer a visual explanation of the lemniscate’s structure, in Figures 3, 4. (Mathematical details are given
in [2].)

2 Elementary Constructions: Linkages and the Like

The lemniscate equation may be written(x2+y2)2 = A(x2−y2) (or, in polar coordinates,r2 = Acos2θ ). The
pair of tangent lines to the double point at the origin is represented by the quadratic termx2−y2 = 0. With
A = 2c2, the lemniscate has two additionalx-intercepts(±

√
2c,0), and pair offoci f± = (±c,0).

A simple “draftsman’s tool” for drawing the lemniscate may be designed as in Figure 2 a). The device
is in fact a special case of thethree rod linkageconsidered by James Watt (1784), who was interested in
converting rotational motion into linear motion. For the lemniscate, the two end rods have length

√
2c and

pivot about the focif±, while the middle rod of length 2c has no fixed end but is hinged to the first two rods.
The pencil is mounted at the midpoint of the middle rod. As theend rods rotate (oppositely) in circles with
centersf±, the pencil traces out the lemniscate.

The ingenious linkage of Peaucellier (1864) achieved Watt’s goal of interchanging rotational and linear
motion. It would also enable a draftsman to construct (an arcof) the lemniscate from the rectangular hy-
perbolax2 − y2 = c2/2 (andvice versa), as shown in Figure 2 b). The two rods in the figure with pivot at
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Figure 1 : a) The infinity machine; b) Peaucellier’s inverter.

the origin have equal lengthL > c and the remaining four rods have lengthl =
√

L2−c2. The two “stylus”
(circled) joints of the Peaucellier linkage maintain “inverse” positions with respect to thecircle of inversion
x2 + y2 = c2 (dashed). As a transformation, inversion maps a point with polar coordinates(r,θ) (r > 0) to
the point(c2/r,θ) on the same ray from the origin with (scaled)reciprocal radius. (For Watt and Peaucellier
linkages, see [4], [7].)

Figure 2 : The lemniscate as the special Cassinian d1d2 = c2.

The lemniscate and hyperbola related by inversion share thesame pair of foci,f± = (0,±c). As for the
meaning offoci we recall thestring construction of the ellipse: Generalizing the circle (whose “two foci”
coincide), the ellipse may be described as the locus of points the sum of whose distances from the foci is a
given constantd1 + d2 = 2C > 2c. Likewise, the distances to the foci along the hyperbola have a constant
difference, d1−d2 = 2C < 2c. Finally, aCassinian ovalmay be defined as the locus of points theproduct
of whose distances from the focif± = (0,±c) is a constantd1d2 = C2. The lemniscate is the Cassinian with
C = c; smaller values 0< C < c give pairs of “orbits”, one around each sunf±, while larger valuesC > c
give single orbits around the double starf±. For sufficiently largeC > c, the Cassinian is indeed oval, and
was the astronomer Cassini’s idea (1680) for planetary orbits in a (single star) solar system.
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3 Alberti’s Veil and the Extended Complex Plane

For nearly two centuries mathematicians have known that an algebraic curve is best understood in the com-
plex projective setting, where one may take full account of all the complex and infinite points on the curve,
not just the “visible” (real, finite) ones. It is hard to imagine how mathematicians could have reached this
insight without the Renaissance development of perspective and all the geometric ideas which flowed from
it. (See [1] and [6] for different aspects of this very substantial connection between art and mathematics.)

We will not explain in general how such a curve may be regardedas 2-dimensional (Riemann) surface
in a 4-dimensional space, and how it may inherit also geometric structure from the latter space (thecomplex
projective plane). But we will indicate, more concretely, how the full lemniscate looks topologically like
a sphere, and hasrotational symmetriesfamiliar to us from our experience in the 3-dimensional, physical
world. To do so, we first need to consider some key complex functions which describe the lemniscate.

To begin, we reinterpret the relationship between lemniscate and hyperbola. From now on, for notational
simplicity, we takec = 1. Introducing the complex variablez = x+ iy, the lemniscate and hyperbola are
interchanged bycomplex inversion z7→ I (z) = 1/z. We note thatI (z) differs from circle inversion by
reflection in thex-axis, an obvious symmetry of both curves (given now bycomplex conjugation z7→ z̄=
x− iy). With special definitionsI (0) = ∞, I (∞) = 0, I (z) takes the unit circle to itself and interchanges
“inside” and “outside”. AlthoughI (z) distorts Euclidean distance in the plane, it preserves angles, and is
as nice a transformation as one could ask for; in fact,I (z) may be understood as a rotation of the sphere!

What is required here is exactlyAlberti’s veil of Renaissance perspective. In mathematics, the standard
correspondence of points of the sphere to points in the planeis known asstereographic projectionfrom the
north pole (theeye). Here we require the “reverse” application of the method ofAlberti’s veil to transfer
features in the complex planeC (theveil) to features on the unit sphereX2+Y2 +Z2 = 1 (thescene, which
in this case lies both in front of and behind the veil).

More explicitly, stereographic projectionρ : S2 → C is defined by considering downward sloping rays
from the north pole(0,0,1); the ray will intersect the sphereS2 at a second pointP and this point is mapped
to (or identified with) the point of intersection of the ray with the equatorial planeZ = 0 (which is identified
with C). The north pole itself is sent to∞ by a horizontal ray. From this “spherical perspective”, complex
inversionI (z) simply rotates the sphere by 180◦ about theX-axis.

Building on I (z), we will also make essential use of theJoukowski map j(z) = 1
2(z+ 1

z), named
after Zhukovsky (1847–1921) for his studies of airflow around obstacles. The key property ofj(z) is that
it defines a smooth, angle-preserving mapping of the exterior (or interior) of the unit disc onto theslit
domainobtained by removing the interval[−1,1] from the complex plane. In general, suchconformal maps
transform 2-dimensional ideal fluid flow in one region into ideal flow in another region. In the case of
j(z), uniform, linear flow to the right is transformed into flow around an obstacle with circular cross section
|z|2 = x2 + y2 ≤ 1. An additional application ofj(z) then transforms the latter into a flow around an airfoil
(wing cross section). A nice variety of airfoils may be obtained asj-images of circles—this is the beauty
of Zhukovsky’s construction. (See [4] for discussion ofI ,ρ , and flows around obstacles, emphasizing
geometry.)

4 Metamorphosis of the Disdyakis Dodecahedron

In this section we rotate our lemniscate 90◦—by change of sign,A = −2—so that it stands upright like a
figure of eight8. Correspondingly, we use the (conjugated) Joukowski mapj−(z) = 1

2(z− 1
z) =

−i j (iz), below. We give a (clockwise) “storyboard” explanation of the symmetry and structure of
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Α2Β2+Β2Γ2+Γ2Α2= 0
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Figure 3 : Metamorphosis of the Disdyakis Dodecahedron (clockwise from upper left).
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the lemniscate as a disdyakis dodecahedron, based on the mappings discussed above, and radial
projection onto the sphere. The following comments may helpto explain themetamorphosis of the
disdyakis dodecahedron, Figure 3, in more mathematical terms:

1. Radial projection of the disdyakis dodecahedron (upper left) gives the tiled sphere (upper
right), with 48 congruent spherical triangles, withgeodesic edgesand angles 45◦, 60◦, 90◦.

2. Stereographic projection from the north pole gives the triangulated complex plane (middle
right); the angles are the same and the non-straight edges ofthe “triangles” are arcs of circles.

3. The (extended) complex plane consists of the triangulated unit discD (lower right) together
with its congruent imageunder complex inversionI (z), the exteriorE of the unit circle.

4. The inverted Joukowski mapJ (z) = I ( j−(z)) = 2z
z2−1 takesD onto the “slit plane”S1 (lower

left) andE onto an identical copyS2 ≃ S1. The slit (dashed) extends fromz= i up to∞, and
from z = −i down to∞, and may be thought of as a “collapsed circle”, folded at±i, with
left and right edges both containing∞, the images of the points±1 in the previous figure.
Thus, theJ -image of the entire complex plane consists of two “sheets” (only one of which
is shown), which are zipped together along the slit.

5. TheVitruvian figure of eight(middle left) consists of lemniscate, circle, hyperbola, and x,y
axes. These were regarded above as separate plane curves (related by Peaucellier); now they
are but traces of the full lemniscate (with equationα2β 2+β 2γ2+ γ2α2 = 0, in suitable com-
plex coordinates), each trace a “mirror” of reflection symmetry. But the enigmatic Vitruvian
eight hides the existence ofthe second sheet(glued to the back?), without which the full
symmetry is lost (leaving square and hexagon still visible as cryptic scaffolding).

Not to get too serious, we have invokedVitruvian Man (1487), Leonardo Da Vinci’s iconic
study of proportion, symmetry and hidden mathematical meaning in the figure of man, inspired by
the writings of the Roman architect Vitruvius. But mathematical curiosity played no small part in
the Renaissance imagination; Da Vinci (a brilliant studentof polyhedra) would surely have allowed
even the figure of eight to hold meaning, beauty, and a hint of mystery.

5 The Lemniscate for its Own Sake

Works of Gauss (1827) and Riemann (1854) on intrinsic differential geometry made it possible to
discuss theshapeof a curved surface without the need to view the surface “fromthe outside”. Given
aRiemannian metric, one can measure distances and angles on the surface, definegeodesics(paths
of shortest length), compute the surface’sGaussian curvature K, etc. The same idea, suitably
generalized, was exactly what Einstein required for his interpretation of gravity in terms of the
intrinsic curvature of 4-dimensional space-time, and the unified treatment of light rays and inertial
motion of particles as geodesics.

What is the lemniscate’s intrinsic geometry as a surface (complex curve)? In its own right,
the lemniscate may be viewed as a topological sphere (free ofself intersections), with Riemannian
metric inherited from complex projective space. At some points the lemniscate is positively curved
(K > 0) like a sphere of radiusR= 1/

√
K; at others, the lemniscate is negatively curved (K < 0),

like a potato chip.

The two contour plots ofK in Figure 4 reveal the remarkable symmetry of the lemniscate.
Here, the standard sphere serves as reference space for plotting regionsK j < K < K j+1 (left), and
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the same regions are shown stereographically projected onto the plane (right); in both plots,K
has constant value along the (dark) “boundary curves”. We locate the curvature function’s critical
points with respect to thecuboctahedron(!) on the left: Six maximaKmax= 2 at centers of fourfold
rotational symmetry; eight minimaKmin = −7 at centers of threefold rotational symmetry; twelve
saddle pointsKsaddle= −1/4 at the centers of twofold rotational symmetry. (The latterK-values
are unexpectedly simple.)

The 26= 6+8+12 critical points are the vertices of aRiemannian disdyakis dodecahedron.
For the lemniscate also turns out to have exactly nine simpleclosed geodesics of reflection sym-
metry (represented by circles and lines on the right side of Figure 4), which are subdivided by the
26 vertices into the 72 edges of 48 congruent geodesic triangles; the latter 45◦,60◦,90◦ “tiles” are
simply transitively permuted by the full octahedral symmetry group of the lemniscate, and define a
non-constant curvature analogue of the∗432 tiling of the sphere already pictured in Figure 3.

Figure 4 : Gauss curvature of lemniscate on reference sphere and plane.
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