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Abstract 
 

We describe an educational method to teach hyperbolic geometry at the upper elementary and secondary level, mostly with fruits 
and construction materials; and we make some remarks about the connection of hyperbolic geometry and poetry that explains the 
significance of such a method in mathematics education. 

 
It is not because of its complexity that I blame such an axiomatic system.  
It is the way in which it is offered to the students…  
Geometrical axiomatics cannot be meaningful as a teaching subject  
unless the student is allowed to perform these activities himself. 

(Hans Freudenthal) 
 

Yes, the basics of the new geometry of Gauss, Bolyai and Lobachevsky should be part of general 
education. It has changed our concept of geometry, of mathematics, of the natural sciences, and 
of the world. After almost two centuries, it is simply a must for new generations to understand the 
basics of other geometries beyond the Euclidean one if they want to get any idea about modern 
science. 
 
The only problem with such a statement is that almost any branch of mathematics makes similar 
claims. Half a century ago, the New Math Movement aimed at teaching teenagers the basics of 
abstract algebra which was just as important as geometry. Likewise, set theory, probability or 
cryptography also call for their places under the sun of education.  
 
However, I think that importance is a necessary but not sufficient condition in this field. Forty 
years ago, Freudenthal was reluctant to include axioms of geometry into the curriculum of 
twelve-year-olds, not because the topic was not important enough, but because the axioms were 
set up by the teacher, not by the students. In other words, interest and independent activity of 
students are just as vital in the learning process as the scientific significance of the given theory. 
 
The teacher must face an even greater problem in this case. Teaching about different geometries 
means the change of the paradigm of teaching itself. The greatest achievement of Gauss, Bolyai 
and Lobachevsky was, not the discovery of hyperbolic geometry, but the discovery of the 
existence of different geometries at the same time. Their discovery reminded me of the words of 
Galileo who did not claim that the heliocentric system was the only possible one. He only stated 
that the movement of the planets was easier to study by using the heliocentric model rather than 
the geocentric one. As he wrote in ‘Dialogo’: ‘It is easier to consider the pavement of the 
marketplace to be fixed rather than the children playing on the pavement.’ 
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Still, the practising teacher often looks at ‘Geometry’ as an unassailable fortress of theorems that 
had been built by infallible luminaries of ancient times, as distant as possible. The teacher has the 
false conviction that the authority of ancient sages releases him from any responsibility for his 
teachings: ‘This statement is theirs, not mine!’  
 

 
Figure 1. 

Fig. 1 shows a teacher performing experiments among her students. It is probably the first time in 
her life to study spherical geometry on an orange, with toothpicks and rubber bands. She may 
vaguely remember some lengthy trigonometric equations with many sines and cosines, but she 
has no other learned advantage over the thirteen-year-olds around her. Still, she is neither 
embarrassed nor pretending Know-All, but bravely takes up the role of the partner of her students 
in this research.  
 
Alexandrov [1] wrote about hyperbolic geometry: ’Lobachevskian geometry can hardly be 
included in secondary school curricula, but it seems essential to give pupils an idea of it, to show 
the greatness of the human spirit, capable of creating unimaginable concepts and theories which 
in the course of time proved to be comprehensive and fruitful.’ I disagree with the first part of this 
quote, but fully agree with the conclusion. 
 
Following is a rough outline of a method that I call comparative geometry. The goal is to teach 
simultaneously Euclidean geometry via the model of a flat sheet of paper; spherical geometry on 
the surface of a fruit or a plastic sphere; and hyperbolic geometry on the surface of a plastic 
hemisphere or half an apple or onion. We only need the surfaces themselves to understand the 
basic concepts. To go beyond the basics, we can make use of planar and spherical construction 
materials. 
 
So the essence of the method is to insert an intermediate step, a kind of spherical geometry, 
between Euclidean plane geometry and hyperbolic geometry.  The spherical shape is familiar and 
friendly for any age group. Indeed, spherical or spheroidal forms are much more frequent in 
Nature than their planar counterparts. On the other hand, spherical geometry is far enough from 
the geometry of the plane to demonstrate the existence of a different world of geometry. If the 
student made the first step from Euclid towards the acceptance of spherical geometry, it will be 
much easier to make a further step from spherical to hyperbolic geometry.  
 
Luckily, a Poincaré model of hyperbolic geometry is built on the hemisphere. Experiences in 
spherical geometry come in handy when studying features of the hyperbolic hemisphere. 
Actually, it was the Poincaré model that helped me understand hyperbolic geometry. Before 

Lénárt
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knowing this model, I was deeply frustrated by most of the books on the topic. I found that the 
word ‘obviously’ in these books would introduce a statement that was anything but obvious for 
me. The hemispherical model, however, seems to be viable not only for teachers-to-be (many of 
whom being frustrated in the same way with hyperbolic geometry as I was), but also for 
teenagers. 
 
Naturally, there are many excellent software materials that can be complemented with 
comparative geometry, as for example, the program of Szilassi [5] or The Geometer’s Sketchpad 
[6] about hyperbolic geometry, or Cinderella [2] on comparative geometry. 
 
So what are the surfaces on which we work out our geometries? 
 

     
Figures 2, 3, 4 

A sheet of paper that represents the infinite plane [Figure 2]; a plastic sphere whose surface 
represents the spherical surface [Figure 3]; and the open hemisphere whose borderline does not 
belong to our model represents the hyperbolic surface [Figure 4]. We choose the point as the 
basic element of our geometry in any of these three geometries [Figure 5 shows points on the 
hyperbolic surface]. We have but one reason for this choice, namely, we have been taught in 
school geometry to start from the point. 

     
Figures 5, 6, 7 

The two curved hyperbolic lines on Fig. 6 intersect, but on Fig. 7 they do not, because there are 
no points of the hyperbolic surface on the equator of the hemisphere. 
 
We take for the simplest line the straight line on the plane [Figure 8]; the great circle on the 
sphere [Figure 9]; and the vertical semicircle on the hyperbolic hemisphere, that is, a spherical 
semicircle which is perpendicular to the omitted equator of the hemispherical model. All the 
vertical semicircles on Fig. 10 are infinite, congruent straight lines on the hyperbolic surface. 

     
Figures 8, 9, 10 
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Other models of straight lines or segments: a straightedge on a sheet of paper; the cutting lines on 
the peel of a perfectly round apple that is cut into two halves; and the cutting line on the outer 
brown peel of a perfectly hemispherical onion sliced in the usual way on a slice board [Figures 
11, 12, 13]: 

     
Figures 11, 12, 13 

There are many ways of defining certain families of straight lines in the three geometries. One 
example of such definition is the concept of pencils of straight lines. On Figs. 14, 15, 16 there are 
three pencils each of which consists of all the straight lines passing through a fixed point of the 
surface. On the sphere of Fig. 15 these spherical straight lines pass through the opposite point as 
well. On the hyperbolic hemisphere of Fig. 16 we get funny spider-like lines that do not appear to 
be straight; but they are all hyperbolic straight lines. 

     
Figures 14, 15, 16 

Other types of pencils consist of parallel straight lines. Fig. 17 shows a parallel pencil on the 
plane. No such pencil exists on the sphere, since there are no parallel straight lines on the sphere. 
Fig. 18 shows a pencil of parallel straight lines on the hyperbolic surface. Apparently, the lines on 
Fig. 18 meet in a point; but remember that the points of the equator do not belong to the 
hyperbolic model, so these hyperbolic lines are non-intersecting indeed. 

  
Figures 17, 18 

It is interesting to mention that many important results in geometry came from the intention to 
unify these two types of pencils (intersecting and parallel) into one single case; in other words, to 
consider parallel lines as lines meeting at ‘a point at infinity’.  
 
How to measure the distance between points and the angle between straight lines in the three 
different geometries? Let’s start with measurement of an angle. 

   
Figures 19, 20, 21 
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We measure the angle between two straight lines on the plane and on the sphere in the usual way. 
So the planar angle on Fig. 19 is 60°; and the spherical angle on Fig. 20 is 55°. In order to 
measure the hyperbolic angle on the hemispherical model of Fig. 21, we look for a moment at the 
figure as if the lines were not hyperbolic, but spherical lines. We draw two spherical tangents to 
the two semicircles at their point of intersection, and measure the spherical angle of the two 
tangents. Now we change our perspective again, and accept this measure as the measure of the 
two hyperbolic straight lines. So the hyperbolic angle on Fig. 21 is 40°. Here equal units of angle 
seem to be equal on each surface – in contrast with measuring hyperbolic distance, as you will 
see. We can believe our eyes when we measure angles on the three surfaces. However, another 
type of oddity comes up when we try to measure angle of hyperbolic straight lines. 
 
On Fig 22 we see three types of pairs of hyperbolic straight lines. One pair has a point of 
intersection on the hyperbolic hemisphere, so we can measure their hyperbolic angle which is 
about 70° here. Another pair meets at the equator which has no point on the hyperbolic surface, 
so the two lines can be called parallel. In this case the two spherical tangents coincide, so their 
hyperbolic angle is 0°. The two straight lines of the third type (which look like two spherical 
semicircles) create no angle region to measure! 
 
Measuring distance of points is easy on plane and sphere, but much more tricky on the 
hemisphere. 

     
Figures 22, 23, 24, 25  

Both on the plane and on the sphere equal units of measuring distance seem to be equal, but this 
is not the case on the hyperbolic surface. The equator does not belong to our model (we can 
imagine it as the horizon being infinitely far away from us), so its points can never be reached. So 
when you walk along a hyperbolic straight line towards the equator with equal units of measuring 
hyperbolic distance, your steps appear as becoming shorter and shorter for the external observer. 
 
We can say, for example, that as we are approaching the omitted equator along a hyperbolic 
straight line, we always take half of the spherical distance on the line to the equator for the next 
hyperbolic unit. This means that our steps will become shorter and shorter for an outer observer, 
and we never reach the equator. The problem with this solution is that this measurement of 
distance does not fully harmonize with the chosen method of measuring angle. For example, it 
will not be true in a hyperbolic triangle that equal sides subtend to equal angles (the Isosceles 
Triangle Theorem). So we apply another way of counting equal units of hyperbolic distance. This 
counting is based on cross ratio – another concept which is not too difficult but a bit lengthy to 
explain here. The result is that, for example, the length of your steps would be, not 45, 22.5, 
11.25, 5.625,… (always half of the previous one), but 30, 24, 16, ≈9.4,… Here we have infinitely 
many units again on each straight line. 
 
All the lines of equal latitude (in the spherical sense of the term) are infinite hyperbolic straight 
lines, congruent with each other. The longitude-like lines show the scales of distance along the 
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straight lines. Every latitude-like line on the picture has fourteen equal hyperbolic units of 
distance on it. The remaining, hardly visible parts between the lowest lines of measure and the 
equator are infinitely long hyperbolic rays. So those hardly visible parts contain incomparably 
more units than the visible parts. 
 
This construction can be used to design a hyperbolic ruler with a scale of distance on it as seen on 
Fig. 27. Here the ruler shows 10 units (five units of lighter colour and five units of darker shade), 
and the thin, non-coloured parts above the equator contain the infinitely long rays. The picture on 
Fig. 28 shows how to measure the hyperbolic distance of two points on the hemisphere. We draw 
the one possible hyperbolic straight line through the two points. Now we change our perspective 
from hyperbolic to spherical, and consider this segment of a hyperbolic straight line as if it were 
an arc of a spherical circle. We construct the centre of this spherical circle on the equator, and 
connect this centre with the endpoints of the arc. Then we fit the centre of our hyperbolic ruler to 
the centre of the circle, and measure the distance of the two points in hyperbolic units. 

       
Figures 26, 27, 28, 29 

The hyperbolic distance of the two points on Fig. 28 is approximately 3 units – two full units plus 
a bit on the left side and a bit on the right side. Amazingly, if we make use of these methods and 
tools of measuring angle and distance, then the hyperbolic triangle on Fig. 29 is a regular triangle 
with three equal angles and three equal sides! The equality of the angles are clearly visible on the 
picture (they are about 30° each), but the equality of the sides can only be checked with the 
hyperbolic ruler. All the sides are about 5 units of hyperbolic distance. 

 
What is the sum of interior angles in a triangle? The easiest way to check this sum is to take 
regular triangles, because we only have to consider one angle of each triangle (the other two are 
of the same measure). As you see in Fig. 30, the sum of angles in these triangles is always 
60°+60°+60°=180° on the plane. On the sphere of Fig. 31, they start from 60°+60°+60°=180° 
because very small spherical triangles are very similar to planar triangles; but they keep on 
growing to the other extreme where all the three vertices lie on a great circle, and each angle will 
be 180°, so the sum will grow to 3·180°=540. On the hyperbolic hemisphere of Fig. 32, the sum 
starts from 60°+60°+60°=180°, but instead of growing, it diminishes to 0°+0°+0°=0° in the 
biggest triangle.  

   
Figures 30, 31, 32 

Lénárt
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An interesting consequence is that on the sphere and on the hemisphere the change of length of 
the sides always goes together with changing the angles – in sharp contrast with the plane. In 
other words, there are no similar non-congruent triangles in spherical geometry and in hyperbolic 
geometry.  

     
Figures 33, 34, 35 

Figs. 33, 34, 35 show three tilings or tessellations or mosaics in the three geometries. Each of 
them consists of congruent triangles. This seems trivial on Figs. 33, 34,  but far from trivial on 
Fig. 35. However, a closer look to the triangles of Fig. 35 shows that they have the same angles, 
90°, 45°, and 30° in each triangle. So they are all congruent! 
 
The famous ‘Circle limit’ drawings of Escher can be interpreted as if on a hyperbolic hemisphere, 
consisting of, not similar, but congruent motifs. Escher’s drawings lead to another possibility of 
illustrating the hyperbolic surface, namely the Poincaré planar disc. (In Fig. 10, the hardly visible 
black segments under the hemisphere show straight lines of the Poincaré disc.) There are many 
other possibilities. One of the most interesting and appealing models of limited parts of the 
hyperbolic surface have been worked out by Daina Taimina in her ‘Crocheted hyperbolic 
surfaces’[Figures 36, 37, 38].: 

     
Figures 36, 37, 38 

Apart from visual arts, there are bridges between hyperbolic geometry and literature as well.  
 
Walt Whitman wrote around 1850, a few decades after the discovery of hyperbolic geometry, and 
a few years before its breakthrough among mathematicians: “ The messages of great poets to each 
man and woman are, Come to us on equal terms, Only then can you understand us, We are no 
better than you, What we enclose you enclose, What we enjoy, you may enjoy.  Did you suppose 
there could be only one Supreme? We affirm there can be unnumbered Supremes, and that one 
does not countervail another any more than one eyesight countervails another…”.  
 
Replace the word ‘poets’ with ‘scientists’ and read it again. This was exactly the spirit that led 
Gauss, Bolyai and Lobachevsky to a new world of geometry, and the spirit that led Whitman to a 
new world of poetry as well. It was the spirit that shocked the mathematical community, and the 
literary community of the nineteenth century. It is exactly the spirit that shocks many educators of 
our days. The reason is that this change means more than the change or extension of the material 
to teach and learn. This is a change of paradigm, from a fixed ‘Supreme’, a fixed system to teach 
to a menu of systems that the teacher offers to her students, and leaves to their decision which 
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system they choose to use in a given problem solving situation. I think this is the key issue of the 
renewal of mathematics education. 

 
At the beginning of the twentieth century, when Bolyai’s work became widely known in 
Hungary, one of the best poets of the period, Mihály Babits wrote a poem titled ‘Bolyai’ 
(translated into many languages, the English translation made by Paul Sohar). Babits probably 
did not study hyperbolic geometry, yet he succeeded to express what was the pith of Bolyai’s 
work even for the non-mathematician: 

With new natural laws, past the narrow sky, 
I opened up a new infinity past the thinkable; 
no king in history has conquered more than I 
 
by stealing the secret treasures of the impossible. 
Listen Euclid, your laws command you not to plod 
beyond your prison; I just laugh at you with God. 

Let me finish off with some words about another type of bridges. Several years ago, I proposed to 
erect a memorial plaque which would commemorate Bolyai together with Gauss and 
Lobachevsky in Olomouc, where Bolyai served as an army officer. By the cooperation of the 
Czech Military Academy and the Hungarian Military Academy the idea turned into reality in 
2004, but only with the name of Bolyai on the plaque in Czech and Hungarian languages.  
 
But I still have my original dream. It would be wonderful to erect a common memorial to the 
three great spirits who represent three nations of Europe. Such memorial would serve as a bridge 
between nations, high over priority quarrels and petty fights. It would commemorate three great 
creators of one of the greatest achievements of mankind: GEOMETRY. 
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